|  |  Welcome to Loot.co.za!  
				Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search | Your cart is empty | ||
| Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > General 
 Presenting the use of photonics techniques for measurement in mechanics, this book provides a state-of-the-art review of this active and rapidly growing field. It serves as an invaluable resource for readers to explore the current status and includes a wealth of information on the essential principles and methods. It provides a substantial background in a concise and simple way to enable physicists and engineers to assess, analyze and implement experimental systems needed to solve their specific measurement problems. 
 Table of contents: Stochastic methods in nonlinear structural dynamics.- Stochastic models of uncertainties in computational structural dynamics and structural acoustics.- The tale of stochastic linearization techniques: over half a century of progress.- Comprehensive modeling of uncertain systems using fuzzy set theory.- Bounding uncertainty in civil engineering: theoretical background and applications.- Combined methods in nondeterministic mechanics. In this book the current state of the art of nondeterministic mechanics in its various forms is presented. The topics range from stochastic problems to fuzzy sets; from linear to nonlinear problems; from specific methodologies to combinations of various techniques; from theoretical considerations to practical applications. It is specially designed to illuminate the various aspects of the three methodologies (probabilistic or stochastic modelling, fuzzy sets based analysis, antioptimization of structures) to deal with various uncertainties and deepen the discussion of their pros and cons. 
 Recently, several applications, primarily driven (1) The foundations of Maxwell's equations, (2) Basic homogenization theory, (3) Coupled systems (electromagnetic, thermal, mechanical and chemical), (4) Numerical methods and (5) An introduction to select biological problems. The text can be viewed as a research monograph suitable for use in an upper-division undergraduate or first year graduate course geared towards students in the applied sciences, mechanics and mathematics that have an interest in the analysis of particulate materials. " 
 Topics in Model Validation and Uncertainty Quantification, Volume : Proceedings of the 31st IMAC, A Conference and Exposition on Structural Dynamics, 2013, the fifth volume of seven from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Uncertainty Quantification & Propagation in Structural Dynamics Robustness to Lack of Knowledge in Design Model Validation 
 Computational Fluid Dynamics has now grown into a multidisciplinary activity with considerable industrial applications. The papers in this volume bring out the current status and future trends in CFD very effectively. They cover numerical techniques for solving Euler and Navier-Stokes equations and other models of fluid flow, along with a number of papers on applications. Besides the 88 contributed papers by research workers from all over the world, the book also includes 6 invited lectures from distinguished scientists and engineers. 
 The book illustrates the use of simple mathematical analysis techniques within the area of basic structural mechanics, in particular the elementary theories of beams, columns and cables. The focus is on: i) Identification of the physical background of the theories and their particular mathematical properties. ii) Demonstration of mathematical techniques for analysis of simple problems in structural mechanics, and identification of the relevant parameters and properties of the solution. iii) Derivation of the solutions to a number of basic problems of structural mechanics in a form suitable for later reference. The presentation concentrates on the main principles and the characteristics of the solutions. The theory also serves as a basis for the formulation of numerical models and for intelligent interpretation of their results. 
 Masonry constructions are the great majority of the buildings in Europe's historical centres and the most important monuments in its architectural heritage and the demand for their safety assessments and restoration projects is pressing and constant. Nevertheless, there is a lack of a widely accepted approach to studying the statics of masonry structures. This book aims to help fill these gaps by presenting a new comprehensive, unified theory of statics of masonry constructions. The book, result of thirty years of research and professional experience, through an interdisciplinary approach combining engineering, architecture, advances from the simple to the complex and analyses statics of a large variety of masonry constructions, as arches, domes, cross and cloister vaults, piers, towers, cathedrals and buildings under seismic actions. 
 This brief develops a data collection plan to assess loss related to electrical surges in homes, and explores the potential impact devices that prevent these surges could have in mitigating these losses. Key topics such as surge sources, surge effects and residential surge protection are clearly defined. Recent fire safety codes proposed a requirement that every dwelling unit be fitted with a surge protection device, as every year there is property damage to electrical and electronic equipment resulting from electrical surges. These proposals have not been implemented due to a lack of reliable data, which this brief seeks to change. The authors evaluate surge phenomena and their sources, surge protection methods, surge protection strategies and industry standards in order to present a data plan that can accurately assess loss related to electrical surges in homes. 
 Designing new structural materials, extending lifetimes and guarding against fracture in service are among the preoccupations of engineers, and to deal with these they need to have command of the mechanics of material behaviour. This ought to reflect in the training of students. In this respect, the first volume of this work deals with elastic, elastoplastic, elastoviscoplastic and viscoelastic behaviours; this second volume continues with fracture mechanics and damage, and with contact mechanics, friction and wear. As in Volume I, the treatment links the active mechanisms on the microscopic scale and the laws of macroscopic behaviour. Chapter I is an introduction to the various damage phenomena. Chapter II gives the essential of fracture mechanics. Chapter III is devoted to brittle fracture, chapter IV to ductile fracture and chapter V to the brittle-ductile transition. Chapter VI is a survey of fatigue damage. Chapter VII is devoted to hydrogen embrittlement and to environment assisted cracking, chapter VIII to creep damage. Chapter IX gives results of contact mechanics and a description of friction and wear mechanisms. Finally, chapter X treats damage in non metallic materials: ceramics, glass, concrete, polymers, wood and composites. The volume includes many explanatory diagrams and illustrations. A third volume will include exercises allowing deeper understanding of the subjects treated in the first two volumes. 
 PREFACE This book deals with the new developments and applications of the geometric method to the nonlinear stability problem for thin non-elastic shells. There are no other published books on this subject except the basic ones of A. V. Pogorelov (1966,1967,1986), where variational principles defined over isometric surfaces, are postulated, and applied mainly to static and dynamic problems of elastic isotropic thin shells. A. V. Pogorelov (Harkov, Ukraine) was the first to provide in his monographs the geometric construction of the deformed shell surface in a post-critical stage and deriving explicitely the asymptotic formulas for the upper and lower critical loads. In most cases, these formulas were presented in a closed analytical form, and confirmed by experimental data. The geometric method by Pogorelov is one of the most important analytical methods developed during the last century. Its power consists in its ability to provide a clear geometric picture of the postcritical form of a deformed shell surface, successfully applied to a direct variational approach to the nonlinear shell stability problems. Until now most Pogorelov's monographs were written in Russian, which limited the diffusion of his ideas among the international scientific community. The present book is intended to assist and encourage the researches in this field to apply the geometric method and the related results to everyday engineering practice. 
 This book contains the edited proceedings of the 2nd Internat- ional Conference on Computationa1 Methods and Experimental Meas- urements held on board the QE2 liner from 27th June to 2nd Ju1y 1984. The meeting was sponsored by the International Society for Computationa1 Methods in Engineering and the Department of Civi1 Engineering, Southampton University and organized by the Computationa1 Mechanics Institute of Southampton, England. The QE2 provided an ideal environment for the international meeting and one that was equa11y convenient for the USA and European re- searchers and offered a 10cation propitious to the interchange of ideas and c10se contact between participants. This book covers a wide range of different topics in Computat- iona1 Methods and Experimental Measurements with the main empha- sis on the re1ationships between experimental and ana1ytica1 5- utions. The first section deals with fluid dynamics problems and a 1arge number of app1ications. Section 2 considers geophysica1 fluid dynamics and describes some atmospheric models and their re1ated problems. Water resources are dealt with in Section 3 which describes some app1ications of porous media f10w and sur- face water mode11ing. Wave interaction problems are described in Section 4 and Section 5 considers some important heat transfer app1ications. Other sections - 6 & 7 - study problems re1ated to stress analysis and structura1 app1ications. Vibration pro- blems are becoming of fundamental importance in engineering and part of the Conference Proceedings - Section 8 - are dedicated to the study of experimental and computational models. 
 F. dell'Isola, L. Placidi: Variational principles are a powerful tool also for formulating field theories. - F. dell'Isola, P. Seppecher, A. Madeo: Beyond Euler-Cauchy Continua. The structure of contact actions in N-th gradient generalized continua: a generalization of the Cauchy tetrahedron argument. - B. Bourdin, G.A. Francfort: Fracture. - S. Gavrilyuk: Multiphase flow modeling via Hamilton's principle. - V. L. Berdichevsky: Introduction to stochastic variational problems. - A. Carcaterra: New concepts in damping generation and control: theoretical formulation and industrial applications. - F. dell'Isola, P. Seppecher, A. Madeo: Fluid shock wave generation at solid-material discontinuity surfaces in porous media. Variational methods give an efficient and elegant way to
formulate and solve mathematical problems that are of interest to
scientists and engineers. In this book three fundamental aspects of
the variational formulation of mechanics will be presented:
physical, mathematical and applicative ones. 
 T. Wichtmann, T. Triantafyllidis: Behaviour of granular soils under environmentally induced cyclic loads. - D. Muir Wood: Constitutive modelling. - C. di Prisco: Creep versus transient loading effects in geotechnical problems. - M. Pastor et al.: Mathematical models for transient, dynamic and cyclic problems in geotechnical engineering. - M. Pastor: Discretization techniques for transient, dynamics and cyclic problems in geotechnical engineering: first order hyperbolic partial diffential equations. - M. Pastor et l.: Discretization techniques for transient, dynamic and cyclic problems in geotechnical engineering: second order equation. - C. di Prisco: Cyclic mechanical response of rigid bodies interacting with sand strata. - D. Muir Wood: Macroelement modelling. - M. F. Randolph: Offshore design approaches and model tests for sub-failure cyclic loading of foundations. - M.F. Randolph: Cyclic interface shearing in sand and cemented solis and application to axial response of piles. - M. F. Randolph: Evaluation of the remoulded shear strength of offshore clays and application to pipline-soil and riser-soil interaction. The book gives a comprehensive description of the mechanical response of soils (granular and cohesive materials) under cyclic loading. It provides the geotechnical engineer with the theoretical and analytical tools necessary for the evaluation of settlements developng with time under cyclic, einvironmentally idncued loads (such as wave motion, wind actions, water table level variation) and their consequences for the serviceability and durability of structures such as the shallow or deep foundations used in offshore engineering, caisson beakwaters, ballast and airport pavements and also to interpret monitoring data, obtained from both natural and artificial slopes and earth embankments, for the purposes of risk assessment and mitigation. 
 This volume contains eight state of the art contributions on mathematical aspects and applications of fast boundary element methods in engineering and industry. This covers the analysis and numerics of boundary integral equations by using differential forms, preconditioning of hp boundary element methods, the application of fast boundary element methods for solving challenging problems in magnetostatics, the simulation of micro electro mechanical systems, and for contact problems in solid mechanics. Other contributions are on recent results on boundary element methods for the solution of transient problems. This book is addressed to researchers, graduate students and practitioners working on and using boundary element methods. All contributions also show the great achievements of interdisciplinary research between mathematicians and engineers, with direct applications in engineering and industry. 
 Piezoelectricity has been a steadily growing field, with recent advances made by researchers from applied physics, acoustics, materials science, and engineering. This collective work presents a comprehensive treatment of selected advanced topics in the subject. The book is written for an intermediate graduate level and is intended for researchers, mechanical engineers, and applied mathematicians interested in the advances and new applications in piezoelectricity. 
 This the fourth volume of six from the Annual Conference of the Society for Experimental Mechanics, 2010, brings together 58 chapters on Application of Imaging Techniques to Mechanics of Materials and Structure. It presents findings from experimental and computational investigations involving a range of imaging techniques including Recovery of 3D Stress Intensity Factors From Surface Full-field Measurements, Identification of Cohesive-zone Laws From Crack-tip Deformation Fields, Application of High Speed Digital Image Correlation for Vibration Mode Shape Analysis, Characterization of Aluminum Alloys Using a 3D Full Field Measurement, and Low Strain Rate Measurements on Explosives Using DIC. 
 A purpose of science is to organize diversified factual knowledge into a coherent body of information, and to present this from the simplest possible viewpoint. This is a formidable task where our knowledge is incomplete, as it is with explosions. Here one runs the risk of oversimplification, naivete, and incom pleteness. Nevertheless a purpose of this work is to present as simply as possible a general description of the basic nature of explosions. This treatise should be of interest to all who are working with explosives such as used in construction or in demolition work, in mining operations, or in military applications. It should also be of interest to those concemed with disasters such as explosions or earthquakes, to those involved in civil defense precautions, and to those concemed with defense against terrorists. That is, this material should be of interest to all who wish to utilize, or to avoid, the effects of explosions as weil as to those whose interest is primarily scientific in nature." 
 Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge. 
 This volume highlights the latest developments and trends in advanced materials and their properties, the modeling and simulation of non-classical materials and structures, and new technologies for joining materials. It presents the developments of advanced materials and respective tools to characterize and predict the material properties and behavior. 
 The concept of virtual manufacturing has been developed in order to increase the industrial performances, being one of the most ef cient ways of reducing the m- ufacturing times and improving the quality of the products. Numerical simulation of metal forming processes, as a component of the virtual manufacturing process, has a very important contribution to the reduction of the lead time. The nite element method is currently the most widely used numerical procedure for s- ulating sheet metal forming processes. The accuracy of the simulation programs used in industry is in uenced by the constitutive models and the forming limit curves models incorporated in their structure. From the above discussion, we can distinguish a very strong connection between virtual manufacturing as a general concept, ?nite element method as a numerical analysis instrument and constitutive laws,aswellas forming limit curves as a speci city of the sheet metal forming processes. Consequently, the material modeling is strategic when models of reality have to be built. The book gives a synthetic presentation of the research performed in the eld of sheet metal forming simulation during more than 20 years by the members of three international teams: the Research Centre on Sheet Metal Forming-CERTETA (Technical University of Cluj-Napoca, Romania); AutoForm Company from Zurich, Switzerland and VOLVO automotive company from Sweden. The rst chapter presents an overview of different Finite Element (FE) formu- tions used for sheet metal forming simulation, now and in the past. 
 Through his voluminous and in?uential writings, editorial activities, organi- tional leadership, intellectual acumen, and strong sense of history, Clifford - brose Truesdell III (1919-2000) was the main architect for the renaissance of - tional continuum mechanics since the middle of the twentieth century. The present collection of 42 essays and research papers pays tribute to this man of mathematics, science, and natural philosophy as well as to his legacy. The ?rst ?ve essays by B. D. Coleman, E. Giusti, W. Noll, J. Serrin, and D. Speiser were texts of addresses given by their authors at the Meeting in memory of Clifford Truesdell, which was held in Pisa in November 2000. In these essays the reader will ?nd personal reminiscences of Clifford Truesdell the man and of some of his activities as scientist, author, editor, historian of exact sciences, and principal founding member of the Society for Natural Philosophy. The bulk of the collection comprises 37 research papers which bear witness to the Truesdellian legacy. These papers cover a wide range of topics; what ties them together is the rational spirit. Clifford Truesdell, in his address upon receipt of a Birkhoff Prize in 1978, put the essence of modern continuum mechanics succinctly as "conceptual analysis, analysis not in the sense of the technical term but in the root meaning: logical criticism, dissection, and creative scrutiny. 
 This is an introduction to the mathematical basis of finite element analysis as applied to vibrating systems. Finite element analysis is a technique that is very important in modeling the response of structures to dynamic loads. Although this book assumes no previous knowledge of finite element methods, those who do have knowledge will still find the book to be useful. It can be utilised by aeronautical, civil, mechanical, and structural engineers as well as naval architects. This second edition includes information on the many developments that have taken place over the last twenty years. Existing chapters have been expanded where necessary, and three new chapters have been included that discuss the vibration of shells and multi-layered elements and provide an introduction to the hierarchical finite element method. 
 There is a large gap between the engineering course in tensor algebra on the one hand and the treatment of linear transformations within classical linear algebra on the other hand. The aim of this modern textbook is to bridge this gap by means of the consequent and fundamental exposition. The book primarily addresses engineering students with some initial knowledge of matrix algebra. Thereby the mathematical formalism is applied as far as it is absolutely necessary. Numerous exercises are provided in the book and are accompanied by solutions, enabling self-study. The last chapters of the book deal with modern developments in the theory of isotropic and anisotropic tensor functions and their applications to continuum mechanics and are therefore of high interest for PhD-students and scientists working in this area. This third edition is completed by a number of additional figures, examples and exercises. The text and formulae have been revised and improved where necessary. 
 The book introduces the reader to the fundamentals of rock mechanics and to its application to economic construction in rock. Models describe the mechanical properties and the permeability of rock. Numerical methods for evaluating the stability of structures in rock are given to solve special problems related to tunnels, caverns, pressure tunnels, dam foundations and slopes. Methods for testing the rock mechanical properties are described. A number of case histories enable the reader to make use of the content in his or her own work. 
 The book covers the state-of-the-art treatment in modelling and experimental investigation of the mechanical behaviour of cellular and porous materials. Starting from the continuum mechanical modelling, to the numerical simulation, several important questions related to applications such as the fracture and impact behaviour are covered. |     You may like...
	
	
	
		
			
			
				Proceedings of the American Academy of…
			
		
	
	 
		
			American Academy of Arts and Sciences
		
		Paperback
		
		
			
				
				
				
				
				
				R608
				
				Discovery Miles 6 080
			
			
		
	 
	
	
	
		
			
				Protein Electrophoresis - Methods and…
			
			
		
	
	 
		
			Biji T. Kurien, R. Hal Scofield
		
		Hardcover
		
		
			
				
				
				
				
				
				R4,188
				
				Discovery Miles 41 880
			
			
		
	 
	
	
	
		
			
				Square-Wave Voltammetry - Theory and…
			
			
		
	
	 
		
			Valentin Mirceski, Sebojka Komorsky-Lovric, …
		
		Hardcover
		
		
			
				
				
				
				
				
				R4,018
				
				Discovery Miles 40 180
			
			
		
	 
	
	
	
		
			
			
				Modelling and Numerical Simulations II
			
		
	
	 
		
			Mordechay Schlesinger
		
		Hardcover
		
		
			
				
				
				
				
				
				R7,689
				
				Discovery Miles 76 890
			
			
		
	 
	
	
	
		
			
				Vusi - Business & Life Lessons From a…
			
			
		
	
	 
		
			Vusi Thembekwayo
		
		Paperback
		
			 
				  (3) 
 |