![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > General
This book offers an essential introduction to the linear and non-linear behavior of solid materials, and to the concepts of deformation, displacement and stress, within the context of continuum mechanics and thermodynamics. To illustrate the fundamental principles, the book starts with an overview of solid mechanics, experimental methods, classes of material behaviors, and the thermodynamic modeling framework. It then explores linear elastic behavior, thermoelasticity, plasticity, viscoplasticity, fracture mechanics and damage behavior. The last part of the book is devoted to conventional and magnetic shape memory alloys, which may be used as actuators or sensors in adaptive structures. Given its range of coverage, the book will be especially valuable for students of engineering courses in Mechanics. Further, it includes a wealth of examples and exercises, making it accessible to the widest possible audience.
This book describes an effective method for modeling advanced materials like polymers, composite materials and biomaterials, which are, as a rule, inhomogeneous. The thermoelastic theory with internal variables presented here provides a general framework for predicting a material's reaction to external loading. The basic physical principles provide the primary theoretical information, including the evolution equations of the internal variables. The cornerstones of this framework are the material representation of continuum mechanics, a weak nonlocality, a non-zero extra entropy flux, and a consecutive employment of the dissipation inequality. Examples of thermoelastic phenomena are provided, accompanied by detailed procedures demonstrating how to simulate them.
This book presents an in-depth study and elucidation on the mechanisms of the micro-cutting process, with particular emphasis and a novel viewpoint on materials characterization and its influences on ultra-precision machining. Ultra-precision single point diamond turning is a key technology in the manufacture of mechanical, optical and opto-electronics components with a surface roughness of a few nanometers and form accuracy in the sub-micrometric range. In the context of subtractive manufacturing, ultra-precision diamond turning is based on the pillars of materials science, machine tools, modeling and simulation technologies, etc., making the study of such machining processes intrinsically interdisciplinary. However, in contrast to the substantial advances that have been achieved in machine design, laser metrology and control systems, relatively little research has been conducted on the material behavior and its effects on surface finish, such as the material anisotropy of crystalline materials. The feature of the significantly reduced depth of cut on the order of a few micrometers or less, which is much smaller than the average grain size of work-piece materials, unavoidably means that conventional metal cutting theories can only be of limited value in the investigation of the mechanisms at work in micro-cutting processes in ultra-precision diamond turning.
The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing.
Challenges in Mechanics of Time-Dependent Materials, Volume 2 of the Proceedings of the 2016 SEM Annual Conference& Exposition on Experimental and Applied Mechanics, the second volume of ten from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Experimental Mechanics, including papers in the following general technical research areas: Extreme Environments & Environmental Effects Structure-Function of Performance of PE Effects of Inhomogeneities & Interfaces Characterization Across Scales Mechanics of Energy & Energetic Materials Metallic Materials Viscoelasticity & Viscoplasticity
This book provides novel insights into two fundamental subjects in solid mechanics: virtual work and shape change. The author explains how the principle of virtual work represents a tool for analysis of the mechanical effects of the evolution of the shape of a system, how it can be applied to observations and experiments, and how it may be adapted to produce predictive theories of numerous phenomena. The book is divided into three parts. The first relates the principle of virtual work to what we observe with our eyes, the second demonstrates its flexibility on the basis of many examples, and the third applies the principle to predict the motion of solids with large deformations. Examples of both usual and unusual shape changes are presented, and equations of motion, some of which are entirely new, are derived for smooth and non-smooth motions associated with, for instance, systems of disks, systems of balls, classical and non-classical small deformation theories, systems involving volume and surface damage, systems with interactions at a distance (e.g., solids reinforced by fibers), systems involving porosity, collisions, and fracturing of solids.
Fracture, Fatigue, Failure and Damage Evolution, Volume 8 of the Proceedings of the 2016 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the eighth volume of ten from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: In-situ Techniques for Fracture & Fatigue General Topics in Fracture & Fatigue Fracture & Fatigue of Composites Damage, Fracture, Fatigue & Durability Interfacial Effects in Fracture & Fatigue Damage Detection in Fracture & Fatigue
Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 9 of the Proceedings of the 2016 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the ninth volume of ten from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Damage Analysis from Thermal Measurements Quantitative Visualization Stress Analysis from Thermal Measurements New Approaches to Residual Stress Measurement Residual Stress & Optical Methods Non-homogeneous Parameters Identification General Inverse Methods Residual Stress Measurement by X-Ray Diffraction
Sensors and Instrumentation, Volume 5. Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics, 2017, the fifth volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Sensors and Instrumentation, including papers on: Sensor Applications Accelerometer Design Accelerometer Calibration Sensor Technology
This is a masterly exposition and an encyclopedic presentation of the theory of hyperbolic conservation laws. It illustrates the essential role of continuum thermodynamics in providing motivation and direction for the development of the mathematical theory while also serving as the principal source of applications. The reader is expected to have a certain mathematical sophistication and to be familiar with (at least) the rudiments of analysis and the qualitative theory of partial differential equations, whereas prior exposure to continuum physics is not required. The target group of readers would consist of (a) experts in the mathematical theory of hyperbolic systems of conservation laws who wish to learn about the connection with classical physics; (b) specialists in continuum mechanics who may need analytical tools; (c) experts in numerical analysis who wish to learn the underlying mathematical theory; and (d) analysts and graduate students who seek introduction to the theory of hyperbolic systems of conservation laws. This new edition places increased emphasis on hyperbolic systems of balance laws with dissipative source, modeling relaxation phenomena. It also presents an account of recent developments on the Euler equations of compressible gas dynamics. Furthermore, the presentation of a number of topics in the previous edition has been revised, expanded and brought up to date, and has been enriched with new applications to elasticity and differential geometry. The bibliography, also expanded and updated, now comprises close to two thousand titles. From the reviews of the 3rd edition: "This is the third edition of the famous book by C.M. Dafermos. His masterly written book is, surely, the most complete exposition in the subject." Evgeniy Panov, Zentralblatt MATH "A monumental book encompassing all aspects of the mathematical theory of hyperbolic conservation laws, widely recognized as the "Bible" on the subject." Philippe G. LeFloch, Math. Reviews
This book presents problems and solutions of the mathematical theories of thermoelasticity and magnetothermoelasticity. The classical, coupled and generalized theories are solved using the eigenvalue methodology. Different methods of numerical inversion of the Laplace transform are presented and their direct applications are illustrated. The book is very useful to those interested in continuum mechanics.
This book presents the theory of continuum mechanics for mechanical, thermodynamical, and electrodynamical systems. It shows how to obtain governing equations and it applies them by computing the reality. It uses only open-source codes developed under the FEniCS project and includes codes for 20 engineering applications from mechanics, fluid dynamics, applied thermodynamics, and electromagnetism. Moreover, it derives and utilizes the constitutive equations including coupling terms, which allow to compute multiphysics problems by incorporating interactions between primitive variables, namely, motion, temperature, and electromagnetic fields. An engineering system is described by the primitive variables satisfying field equations that are partial differential equations in space and time. The field equations are mostly coupled and nonlinear, in other words, difficult to solve. In order to solve the coupled, nonlinear system of partial differential equations, the book uses a novel collection of open-source packages developed under the FEniCS project. All primitive variables are solved at once in a fully coupled fashion by using finite difference method in time and finite element method in space.
This book provides readers with the fundamental, analytical, and quantitative knowledge of machining process planning and optimization based on advanced and practical understanding of machinery, mechanics, accuracy, dynamics, monitoring techniques, and control strategies that they need to understanding machining and machine tools. It is written for first-year graduate students in mechanical engineering, and is also appropriate for use as a reference book by practicing engineers. It covers topics such as single and multiple point cutting processes; grinding processes; machine tool components, accuracy, and metrology; shear stress in cutting, cutting temperature and thermal analysis, and machine tool chatter. The second section of the book is devoted to "Non-Traditional Machining," where readers can find chapters on electrical discharge machining, electrochemical machining, laser and electron beam machining, and biomedical machining. Examples of realistic problems that engineers are likely to face in the field are included, along with solutions and explanations that foster a didactic learning experience.
This book presents in detail the theory, processes and equipment involved in cold rolling precision forming technologies, focusing on spline and thread shaft parts. The main topics discussed include the status quo of research on these technologies; the design and calculation of process parameters; the numerical simulation of cold rolling forming processes; and the equipment used. The mechanism of cold rolling forming is extremely complex, and research on the processes, theory and mechanical analysis of spline cold rolling forming has remained very limited to date. In practice, the forming processes and production methods used are mainly chosen on the basis of individual experience. As such, there is a marked lack of both systematic, theory-based guidelines, and of specialized books covering theoretical analysis, numerical simulation, experiments and equipment used in spline cold rolling forming processes. Illustrated using tables, 3D photographs and formula derivations, this book fills that gap in the literature.
This book provides a simple and unified approach to the mechanics of discontinuous-fibre reinforced composites, and introduces readers as generally as possible to the key concepts regarding the mechanics of elastic stress transfer, intermediate modes of stress transfer, plastic stress transfer, fibre pull-out, fibre fragmentation and matrix rupture. These concepts are subsequently applied to progressive stages of the loading process, through to the composite fractures. The book offers a valuable guide for advanced undergraduate and graduate students attending lecture courses on fibre composites. It is also intended for beginning researchers who wish to develop deeper insights into how discontinuous fibre provides reinforcement to composites, and for engineers, particularly those who wish to apply the concepts presented here to design and develop discontinuous-fibre reinforced composites.
This book, provides a general introduction to the ideas and methods of statistical mechanics with the principal aim of meeting the needs of Master's students in chemical, mechanical, and materials science engineering. Extensive introductory information is presented on many general physics topics in which students in engineering are inadequately trained, ranging from the Hamiltonian formulation of classical mechanics to basic quantum mechanics, electromagnetic fields in matter, intermolecular forces, and transport phenomena. Since engineers should be able to apply physical concepts, the book also focuses on the practical applications of statistical physics to material science and to cutting-edge technologies, with brief but informative sections on, for example, interfacial properties, disperse systems, nucleation, magnetic materials, superfluidity, and ultralow temperature technologies. The book adopts a graded approach to learning, the opening four basic-level chapters being followed by advanced "starred" sections in which special topics are discussed. Its relatively informal style, including the use of musical metaphors to guide the reader through the text, will aid self-learning.
This book addresses applications of earthquake engineering for both offshore and land-based structures. It is self-contained as a reference work and covers a wide range of topics, including topics related to engineering seismology, geotechnical earthquake engineering, structural engineering, as well as special contents dedicated to design philosophy, determination of ground motions, shock waves, tsunamis, earthquake damage, seismic response of offshore and arctic structures, spatial varied ground motions, simplified and advanced seismic analysis methods, sudden subsidence of offshore platforms, tank liquid impacts during earthquakes, seismic resistance of non-structural elements, and various types of mitigation measures, etc. The target readership includes professionals in offshore and civil engineering, officials and regulators, as well as researchers and students in this field.
Experimental and Applied Mechanics, Volume 4 of the Proceedings of the 2016 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the fourth volume of ten from the Conference, brings together contributions to important areas of research and engineering. The collection presents early findings and case studies on a wide range of topics, including: Hybrid Experimental & Computational Techniques Advanced Experimental Mechanics Methods Integration of Models & Experiments Soft Materials Education & Research in Progress Applications
This interdisciplinary work on condensed matter physics, the continuum mechanics of novel materials, and partial differential equations, discusses the mathematical theory of elasticity and hydrodynamics of quasicrystals, as well as its applications. By establishing new partial differential equations of higher order and their solutions under complicated boundary value and initial value conditions, the theories developed here dramatically simplify the solution of complex elasticity problems. Comprehensive and detailed mathematical derivations guide readers through the work. By combining theoretical analysis and experimental data, mathematical studies and practical applications, readers will gain a systematic, comprehensive and in-depth understanding of condensed matter physics, new continuum mechanics and applied mathematics. This new edition covers the latest developments in quasicrystal studies. In particular, it pays special attention to the hydrodynamics, soft-matter quasicrystals, and the Poisson bracket method and its application in deriving hydrodynamic equations. These new sections make the book an even more useful and comprehensive reference guide for researchers working in Condensed Matter Physics, Chemistry and Materials Science.
This book presents theory and latest application work in Bond Graph methodology with a focus on: * Hybrid dynamical system models, * Model-based fault diagnosis, model-based fault tolerant control, fault prognosis * and also addresses * Open thermodynamic systems with compressible fluid flow, * Distributed parameter models of mechanical subsystems. In addition, the book covers various applications of current interest ranging from motorised wheelchairs, in-vivo surgery robots, walking machines to wind-turbines.The up-to-date presentation has been made possible by experts who are active members of the worldwide bond graph modelling community. This book is the completely revised 2nd edition of the 2011 Springer compilation text titled Bond Graph Modelling of Engineering Systems - Theory, Applications and Software Support. It extends the presentation of theory and applications of graph methodology by new developments and latest research results. Like the first edition, this book addresses readers in academia as well as practitioners in industry and invites experts in related fields to consider the potential and the state-of-the-art of bond graph modelling.
This dictionary offers clear and reliable explanations of over 100 keywords covering the entire field of non-classical continuum mechanics and generalized mechanics, including the theory of elasticity, heat conduction, thermodynamic and electromagnetic continua, as well as applied mathematics. Every entry includes the historical background and the underlying theory, basic equations and typical applications. The reference list for each entry provides a link to the original articles and the most important in-depth theoretical works. Last but not least, ever y entry is followed by a cross-reference to other related subject entries in the dictionary.
This book compiles solutions of linear theory of elasticity problems for isotropic and anisotropic bodies with sharp and rounded notches. It contains an overview of established and recent achievements, and presents the authors' original solutions in the field considered with extensive discussion. The volume demonstrates through numerous, useful examples the effectiveness of singular integral equations for obtaining exact solutions of boundary problems of the theory of elasticity for bodies with cracks and notches. Incorporating analytical and numerical solutions of the problems of stress concentrations in solid bodies with crack-like defects, this volume is ideal for scientists and PhD students dealing with the problems of theory of elasticity and fracture mechanics.
Micro-and Nanomechanics, Volume 5 of the Proceedings of the 2016 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the fifth volume of ten from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: MEMS: Materials & Interfaces Microscale & Microstructural Effects on Mechanical Behavior Novel Nano-scale Probes Nanoindentation & Beyond Nanomechanics Dynamic Micro/Nano Mechanics
This volume contains the best papers presented at the 2nd ECCOMAS International Conference on Multiscale Computations for Solids and Fluids, held June 10-12, 2015. Topics dealt with include multiscale strategy for efficient development of scientific software for large-scale computations, coupled probability-nonlinear-mechanics problems and solution methods, and modern mathematical and computational setting for multi-phase flows and fluid-structure interaction. The papers consist of contributions by six experts who taught short courses prior to the conference, along with several selected articles from other participants dealing with complementary issues, covering both solid mechanics and applied mathematics.
This book presents the physico-technical basis and current state of the technology of boronized layers. Special attention is given to the layer structure and morphology of allocated phases and distributions in a superficial zone of chemical compounds. Two- and multi-component phases of alloys and diffusion processes in a self-organizing mode are discussed. Surface hardening by boronizing increases the life time of mechanical tools. This is important for the mining industry, agriculture, textile and chemical industry. The book is important for thermochemical treatment and surface hardening of metals and alloys. |
![]() ![]() You may like...
Introduction to the Physics of…
Seng Ghee Tan, Mansoor B. a. Jalil
Hardcover
R4,288
Discovery Miles 42 880
Bandpass Sigma Delta Modulators…
Jurgen Van Engelen, Rudy J.Van De Plassche
Hardcover
R5,203
Discovery Miles 52 030
Resource-Sensitivity, Binding and…
Geert-Jan M Kruijff, Richard T. Oehrle
Hardcover
R1,705
Discovery Miles 17 050
|