![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > General
This book presents theories and the main useful techniques of the Finite Element Method (FEM), with an introduction to FEM and many case studies of its use in engineering practice. It supports engineers and students to solve primarily linear problems in mechanical engineering, with a main focus on static and dynamic structural problems. Readers of this text are encouraged to discover the proper relationship between theory and practice, within the finite element method: Practice without theory is blind, but theory without practice is sterile. Beginning with elasticity basic concepts and the classical theories of stressed materials, the work goes on to apply the relationship between forces, displacements, stresses and strains on the process of modeling, simulating and designing engineered technical systems. Chapters discuss the finite element equations for static, eigenvalue analysis, as well as transient analyses. Students and practitioners using commercial FEM software will find this book very helpful. It uses straightforward examples to demonstrate a complete and detailed finite element procedure, emphasizing the differences between exact and numerical procedures.
This textbook offers readers an introduction to fracture mechanics, equipping them to grasp the basic ideas of the presented approaches to modeling in applied mechanics In the first part, the book reviews and expands on the classical theory of elastic and elasto-plastic material behavior. A solid understanding of these two topics is the essential prerequisite to advancing to damage and fracture mechanics. Thus, the second part of this course provides an introduction to the treatment of damage and fractures in the context of applied mechanics Wherever possible, the one-dimensional case is first introduced and then generalized in a following step. This departs somewhat from the more classical approach, where first the most general case is derived and then simplified to special cases. In general, the required mathematics background is kept to a minimum Tutorials are included at the end of each chapter, presenting the major steps for the solution and offering valuable tips and tricks. The supplementary problems featured in the book
This volume consists of papers presented at the Variational Analysis and Aerospace Engineering Workshop II held in Erice, Italy in September 2010 at the International School of Mathematics "Guido Stampacchia". The workshop provided a platform for aerospace engineers and mathematicians (from universities, research centers and industry) to discuss the advanced problems requiring an extensive application of mathematics. The presentations were dedicated to the most advanced subjects in engineering and, in particular to computational fluid dynamics methods, introduction of new materials, optimization in aerodynamics, structural optimization, space missions, flight mechanics, control theory and optimization, variational methods and applications, etc. This book will capture the interest of researchers from both academia and industry.
This book presents a historical and scientific analysis as historical epistemology of the science of weights and mechanics in the sixteenth century, particularly as developed by Tartaglia in his Quesiti et inventioni diverse, Book VII and Book VIII (1546; 1554). In the early 16th century mechanics was concerned mainly with what is now called statics and was referred to as the Scientia de ponderibus, generally pursued by two very different approaches. The first was usually referred to as Aristotelian, where the equilibrium of bodies was set as a balance of opposite tendencies to motion. The second, usually referred to as Archimedean, identified statics with centrobarica, the theory of centres of gravity based on symmetry considerations. In between the two traditions the Italian scholar Niccolo Fontana, better known as Tartaglia (1500?-1557), wrote the treatise Quesiti et inventioni diverse (1546). This volume consists of three main parts. In the first, a historical excursus regarding Tartaglia's lifetime, his scientific production and the Scientia de ponderibus in the Arabic-Islamic culture, and from the Middle Ages to the Renaissance, is presented. Secondly, all the propositions of Books VII and VIII, by relating them with the Problemata mechanica by the Aristotelian school and Iordani opvsculvm de ponderositate by Jordanus de Nemore are examined within the history and historical epistemology of science. The last part is relative to the original texts and critical transcriptions into Italian and Latin and an English translation. This work gathers and re-evaluates the current thinking on this subject. It brings together contributions from two distinguished experts in the history and historical epistemology of science, within the fields of physics, mathematics and engineering. It also gives much-needed insight into the subject from historical and scientific points of view. The volume composition makes for absorbing reading for historians, epistemologists, philosophers and scientists.
This book traces the history of the concept of work from its earliest stages and shows that its further formalization leads to equilibrium principle and to the principle of virtual works, and so pointing the way ahead for future research and applications. The idea that something remains constant in a machine operation is very old and has been expressed by many mathematicians and philosophers such as, for instance, Aristotle. Thus, a concept of energy developed. Another important idea in machine operation is Archimedes' lever principle. In modern times the concept of work is analyzed in the context of applied mechanics mainly in Lazare Carnot mechanics and the mechanics of the new generation of polytechnical engineers like Navier, Coriolis and Poncelet. In this context the word "work" is finally adopted. These engineers are also responsible for the incorporation of the concept of work into the discipline of economics when they endeavoured to combine the study of the work of machines and men together.
Experimental Mechanics of Composite, Hybrid, and Multifunctional Materials, Volume 7 of the Proceedings of the 2015SEM Annual Conference& Exposition on Experimental and Applied Mechanics, the seventh volume of nine from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Multifunctional Materials Hybrid Materials Novel Composites Nano- and Particle-Reinforced Composites Additive Manufacturing of Composites Digital Imaging of Composites Damage Detection Non-Destructive Evaluation Fatigue and Fracture of Composites Manufacturing and Joining of Composites Advanced Composites Applications
Hybrid modelling of turbulent flows, combining RANS and LES techniques, has received increasing attention over the past decade to fill the gap between (U)RANS and LES computations in aerodynamic applications at industrially relevant Reynolds numbers. With the advantage of hybrid RANS-LES modelling approaches, being considerably more computationally efficient than full LES and more accurate than (U)RANS, particularly for unsteady aerodynamic flows, has motivated numerous research and development activities. These activities have been increasingly stimulated by the provision of modern computing facilities. The present book contains the contributions presented at the Third Symposium on Hybrid RANS-LES Methods, held in Gdansk, Poland, 10-12 June 2009. To a certain extent, this conference was a continuation of the first symposium taking place in Stockholm (Sweden, 2005) and the second in Corfu (Greece, 2007). Motivated by the extensive interest in the research community, the papers presented at the Corfu symposium were published by Springer in the book entitled “Advances in Hybrid RANS-LES Modelling†(in Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 97). At the Gdansk symposium, along with four invited keynotes, given respectively by S. Fu, U. Michel, M. Sillen and P. Spalart, another 28 papers were presented on the following topics: Unsteady RANS, LES, Improved DES Methods, Hybrid RANS-LES Methods, DES versus URANS and other Hybrid Methods, Modelli- related Numerical Issues and Industrial Applications. After the symposium all full papers have been further reviewed and revised for publication in the present book.
The book presents state-of-the-art works in computational engineering. Focus is on mathematical modeling, numerical simulation, experimental validation and visualization in engineering sciences. In particular, the following topics are presented: constitutive models and their implementation into finite element codes, numerical models in nonlinear elasto-dynamics including seismic excitations, multiphase models in structural engineering and multiscale models of materials systems, sensitivity and reliability analysis of engineering structures, the application of scientific computing in urban water management and hydraulic engineering, and the application of genetic algorithms for the registration of laser scanner point clouds.
Graph theory gained initial prominence in science and engineering through its strong links with matrix algebra and computer science. Moreover, the structure of the mathematics is well suited to that of engineering problems in analysis and design. The methods of analysis in this book employ matrix algebra, graph theory and meta-heuristic algorithms, which are ideally suited for modern computational mechanics. Efficient methods are presented that lead to highly sparse and banded structural matrices. The main features of the book include: application of graph theory for efficient analysis; extension of the force method to finite element analysis; application of meta-heuristic algorithms to ordering and decomposition (sparse matrix technology); efficient use of symmetry and regularity in the force method; and simultaneous analysis and design of structures.
5thInternational Symposium on the Mechanics of Biological Systems and Materials, Volume 6 of the Proceedings of the 2015SEM Annual Conference& Exposition on Experimental and Applied Mechanics, the sixth volume of nine from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Soft Tissues Mechanics Bio-Engineering and Biomechanics Natural Materials & Bio-Inspiration Novel Techniques and Experiments in Biomechanics Tissue Engineering Cells Mechanics
Recent developments in biology and nanotechnology have stimulated a rapidly growing interest in the mechanics of thin, flexible ribbons and Mobius bands. This edited volume contains English translations of four seminal papers on this topic, all originally written in German; of these, Michael A. Sadowsky published the first in 1929, followed by two others in 1930, and Walter Wunderlich published the last in 1962. The volume also contains invited, peer-reviewed, original research articles on related topics. Previously published in the Journal of Elasticity, Volume 119, Issue 1-2, 2015.
This book reviews the theoretical framework of nonlinear mechanics, covering computational methods, applications, parametric investigations of nonlinear phenomena and mechanical interpretation towards design. Builds skills via increasing levels of complexity.
This book presents important concepts in metal fatigue in a straightforward manner, for the benefit of readers who must understand more advanced documents on a wide range of metal fatigue topics. The text shows how metal fatigue problems are solved in engineering practice. The book assumes no prior knowledge of metal fatigue, requiring only a basic understanding of stress analysis and mathematics covered in engineering undergraduate courses.
This book provides an in-depth description of the fundamental tribological aspects of cold and hot sheet rollings. The author describes new developments in the rolling processes, the rolling oils, the rolling rolls and the structural materials resulting from sheet rolling technology and their practical applications. The author includes comprehensive details on both friction and lubrication in rolling.
This book presents key advances in the modeling of reinforcement corrosion and concrete durability. It also examines various further aspects of reinforcement corrosion and concrete durability, striking a balance between modeling and testing. Particular attention is paid to innovative treatments for avoiding deterioration, and to methods for modeling performance in a real environment. Some basic aspects related to non-destructive testing techniques are also discussed. Deterioration-related topics addressed in the book include the basis for modeling alkali-silica reactions, chloride diffusion and the development of concrete microstructure; measurement-related topics include cathodic protection, polarization resistance and resistivity. A combined approach using the AFM technique and polarization measurements is examined, and the relation between cracking and corrosion and the treatment of concrete with hydrophobes or innovative products such as hydrotalcite is also discussed.
Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 8: Proceedings of the 2013 Annual Conference on Experimental and Applied Mechanics, the eighth volume of eight from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Advances in Residual Stress Measurement Methods Residual Stress Effects on Material Performance Optical, Ultrasonic, and Diffraction Methods for Residual Stress Measurement Thermomechanics & Infrared Imaging Inverse Methods Inverse Methods in Plasticity Applications in Experimental Mechanics
The book includes different contributions that cover interdisciplinary research in the areas of * Error controlled numerical methods, efficient algorithms and software development * Elastic and in elastic deformation processes * Models with multiscales and multi-physics "High Performance" adaptive numerical methods using finite elements (FEM) and boundary elements (BEM) are described as well as efficient solvers for linear systems and corresponding software components for non-linear, coupled field equations of various branches of mechanics, electromagnetics, and geosciences.
This book is dedicated to the tube flow of viscoelastic fluids and Newtonian single and multi-phase particle-laden fluids. This succinct volume collects the most recent analytical developments and experimental findings, in particular in predicting the secondary field, highlighting the historical developments which led to the progress made. This book brings a fresh and unique perspective and covers and interprets efforts to model laminar flow of viscoelastic fluids in tubes and laminar and turbulent flow of single and multi-phase particle-laden flow of linear fluids in the light of the latest findings.
Advancement of Optical Methods in Experimental Mechanics, Volume 3 of the Proceedings of the 2015SEM Annual Conference& Exposition on Experimental and Applied Mechanics, the third volume of nine from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of optical methods ranging from traditional photoelasticity and interferometry to more recent DIC and DVC techniques, and includes papers in the following general technical research areas: Advanced optical interferometry Developments in Image correlation (Digital &Volumetric ) Full Field Methods Novel Optical Methods for Stress/Strain Analysis Advances in Optical Methods
This work presents the results of RILEM TC 237-SIB (Testing and characterization of sustainable innovative bituminous materials and systems). The papers have been selected for publication after a rigorous peer review process and will be an invaluable source to outline and clarify the main directions of present and future research and standardization for bituminous materials and pavements. The following topics are covered: - Characterization of binder-aggregate interaction - Innovative testing of bituminous binders, additives and modifiers - Durability and aging of asphalt pavements - Mixture design and compaction analysis - Environmentally sustainable materials and technologies - Advances in laboratory characterization of bituminous materials - Modeling of road materials and pavement performance prediction - Field measurement and in-situ characterization - Innovative materials for reinforcement and interlayer systems - Cracking and damage characterization of asphalt pavements - Recycling and re-use in road pavements This is the proceedings of the RILEM SIB2015 Symposium (Ancona, Italy, October 7-9, 2015).
A motivation for structural health monitoring. Structural health monitoring of aircraft structures. Vibration-based damage diagnosis and monitoring of external loads.Statistical time series methods for vibration based structural health monitoring. Fiber optic sensors. Damage localisation using elastic waves propagation methods experimental techniques. Application for wind turbine blades. Experts actively working in structural health monitoring and control techniques present the current research, areas of application and tendencies for the future of this technology, including various design issues involved. Examples using some of the latest hardware and software tools, experimental data from small scale laboratory demonstrators and measurements made on real structures illustrate the book. It will be a reference for professionals and students in the areas of engineering, applied natural sciences and engineering management.
The book presents a series of concise papers by researchers specialized in various fields of continuum and computational mechanics and of material science. The focus is on principles and strategies for multiscale modeling and simulation of complex heterogeneous materials, with periodic or random microstructure, subjected to various types of mechanical, thermal, chemical loadings and environmental effects. A wide overview of complex behavior of materials (plasticity, damage, fracture, growth, etc.) is provided. Among various approaches, attention is given to advanced non-classical continua modeling which, provided by constitutive characterization for the internal and external actions (in particular boundary conditions), is a very powerful frame for the gross mechanical description of complex material behaviors, able to circumvent the restrictions of classical coarse-graining multiscale approaches.
Topics in Dynamics of Civil Structures, Volume 4: Proceedings of the 31st IMAC, A Conference and Exposition on Structural Dynamics, 2013, the fourth volume of seven from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Modal Parameter Identification for Civil Structures Vibration Control of Civil Structures Cable Dynamics Damage Detection Models for Civil Structures Data-Driven Health Monitoring of Structures & Infrastructure Experimental Techniques for Civil Structures Human-induced Vibrations of Civil Structures Structural Modeling for Civil Structures
Modern computational techniques, such as the Finite Element Method, have, since their development several decades ago, successfully exploited continuum theories for numerous applications in science and technology. Although standard continuum methods based upon the Cauchy-Boltzmann continuum are still of great importance and are widely used, it increasingly appears that material properties stemming from microstructural phenomena have to be considered. This is particularly true for inhomogeneous load and deformation states, where lower-scale size effects begin to affect the macroscopic material response; something standard continuum theories fail to account for. Following this idea, it is evident that standard continuum mechanics has to be augmented to capture lower-scale structural and compositional phenomena, and to make this information accessible to macroscopic numerical simulations.
This book introduces the subject of hyperelasticity in a concise manner mainly directed to students of solid mechanics who have a familiarity with continuum mechanics. It focuses on important introductory topics in the field of nonlinear material behavior and presents a number of example problems and solutions to greatly aid the student in mastering the difficulty of the subject and gaining necessary insight. Professor Hackett delineates the concepts and applications of hyperelasticity in such a way that a new student of the subject can absorb the intricate details without having to wade through excessively complicated formulations. The book further presents significant review material on intricately related subjects such as tensor calculus and introduces some new formulations. |
![]() ![]() You may like...
Anisotropic Doubly-Curved Shells…
Francesco Tornabene, Michele Bacciocchi
Hardcover
R3,620
Discovery Miles 36 200
Constitutive Modeling of Engineering…
Vladimir Buljak, Gianluca Ranzi
Paperback
R4,081
Discovery Miles 40 810
Computational Structural Mechanics…
Snehashish Chakraverty, Karan Kumar Pradhan
Paperback
Vibration Fatigue by Spectral Methods…
Janko Slavic, Miha Boltezar, …
Paperback
R4,114
Discovery Miles 41 140
Statics and Influence Functions - From a…
Friedel Hartmann, Peter Jahn
Hardcover
R5,171
Discovery Miles 51 710
|