![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > General
This book is about two special topics in rheological fluid mechanics: the elasticity of liquids and asymptotic theories of constitutive models. The major emphasis of the book is on the mathematical and physical consequences of the elasticity of liquids; seventeen of twenty chapters are devoted to this. Constitutive models which are instantaneously elastic can lead to some hyperbolicity in the dynamics of flow, waves of vorticity into rest (known as shear waves), to shock waves of vorticity or velocity, to steady flows of transonic type or to short wave instabilities which lead to ill-posed problems. Other kinds of models, with small Newtonian viscosities, give rise to perturbed instantaneous elasticity, associated with smoothing of discontinuities as in gas dynamics. There is no doubt that liquids will respond like elastic solids to impulses which are very rapid compared to the time it takes for the molecular order associated with short range forces in the liquid, to relax. After this, all liquids look viscous with signals propagating by diffusion rather than by waves. For small molecules this time of relaxation is estimated as lQ-13 to 10-10 seconds depending on the fluids. Waves associated with such liquids move with speeds of 1 QS cm/s, or even faster. For engineering applications the instantaneous elasticity of these fluids is of little interest; the practical dynamics is governed by diffusion, .say, by the Navier-Stokes equations. On the other hand, there are other liquids which are known to have much longer times of relaxation."
This book is a collection of papers dedicated to Professor Dr. Krzysztof Wilman 'ski onthe occasionof his 70thbirthday. The bookcontains25 cont- butions of his friends and colleagues. He met the invited authors at di?erent stagesofhisscienti?ccareerofalmost50yearssothatthecontributionscover a wide range of ?elds stemming from continuum mechanics. This happened at numerous universities and research institutes where he both taught and did his excellent research work, e. g. * the University of Lod ' ' z, Poland, where he studied Civil Engineering and did his diploma work onElastic-plastic thermal stresses in a thin ring and where he graduated with his PhD-work in the ?eld of Continuous Models of Discrete Systems, * theInstituteofFundamentalTechnologicalResearchofthePolishAcademy of Sciences in Warsaw, where he got his habilitation in the ?eld Non- cal Continuum Mechanics and where he was the head of the Research Group Continuum Thermodynamics. He collaborated with W. Fiszdon, L. Turski, Cz. Wozniak, H. Zorski and others on the topics axiomatic and kinetic foundations of continuumthermodynamics, theory of mixtures, phase transformations in solids, * theJohnsHopkinsUniversityinBaltimore,US,wherehe workedtogether, e. g. with C. Truesdell, J. Ericksen and W. Williams, on axiomatic and kinetic foundations of continuum thermodynamics, * the College of Engineering, University of Baghdad, Iraq, where he was a Visiting Professor and taught many courses, * theUniversityofPaderbornandtheTechnicalUniversityBerlin,Germany, wherehe had an Alexander von Humboldt Stipend andcontractsasa V- iting Professor (works on a model of crystallizing polymers, on a nonlocal thermodynamicmodelofplasmasandelectrolytesandonmartensiticphase transformations), * the Wissenschaftskolleg zu Berlin (Institute for Advanced Studies), G- many,whereheworkedtogetherwithe. g. I.
It is our pleasure to present these proceedings from the United Engineering Foundation Conference on The Aerodynamics of Heavy Vehicles: Trucks, Buses and Trains held December 2-6, 2002, in Monterey, California. This Department of Energy, United Engineering Foundation, and industry sponsored conference brought together 90 leading engineering researchers from around the world to discuss the aerodynamic drag of heavy vehicles. Participants from national labs, academia, and industry, including truck manufacturers, discussed how computer simulation and experimental techniques could be used to design more fuel efficient trucks, buses, and trains. Conference topics included comparison of computational fluid dynamics calculations using both steady and unsteady Reynolds-averaged Navier-Stokes, large-eddy simulation, and hybrid turbulence models and experimental data obtained from the Department of Energy sponsored and other wind tunnel experiments. Advanced experimental techniques including three-dimensional particle image velocimetry were presented, along with their use in evaluating drag reduction devices. We would like to thank the UEF conference organizers for their dedication and quick response to sudden deadlines. In addition, we would like to thank all session chairs, the scientific advisory committee, authors, and reviewers for their many hours of dedicated effort that contributed to a successful conference and resulted in this document of the conference proceedings. We also gratefully acknowledge the support received from the United Engineering Foundation, the US Department of Energy, Lawrence Livermore National Laboratory, Volvo Trucks America, International Truck and Engine Corporation, and Freightliner LLC.
Nonconvexity and nonsmoothness arise in a large class of engineering applica tions. In many cases of practical importance the possibilities offered by opti mization with its algorithms and heuristics can substantially improve the per formance and the range of applicability of classical computational mechanics algorithms. For a class of problems this approach is the only one that really works. The present book presents in a comprehensive way the application of opti mization algorithms and heuristics in smooth and nonsmooth mechanics. The necessity of this approach is presented to the reader through simple, represen tative examples. As things become more complex, the necessary material from convex and nonconvex optimization and from mechanics are introduced in a self-contained way. Unilateral contact and friction problems, adhesive contact and delamination problems, nonconvex elastoplasticity, fractal friction laws, frames with semi rigid connections, are among the applications which are treated in details here. Working algorithms are given for each application and are demonstrated by means of representative examples. The interested reader will find helpful references to up-to-date scientific and technical literature so that to be able to work on research or engineering topics which are not directly covered here."
Global sustainable development of the world economy requires better understanding and utilization of natural recourses. In this endeavor rheology has an indispensable role. The Rheology Conferences are therefore always an important event for science and technology. The Fifth European Rheology Conference, held from September 6 to 11 in the Portoro-z, Slovenia, will be the first AlI-European rheology meeting after the formal constitution of the European Society ofRheology. As such it will be a special historical event. At this meeting the European Society of Rheology will introduce the Weissenberg Medal, to be bestowed every four years to an individual for hislhers contribution to the field of Rheology. The recipient ofthe first award will be professor G. Marrucci ofthe Universita degli Studi di Napoli, Italy. Two mini Symposia will be part of the Conference. The first, on Industrial Rheology, will commemorate the late professor G. Astarita. The second will honor the eightieth birthday of professor N.W. Tschoegl. This volume comprises extended abstracts of the 15 plenary and keynote lectures and about 300 oral and poster contributions presented at this conference. AII contributed papers were reviewed by members ofthe European Committee on Rheology, assuring the high standard ofthe Conference. Besides the scientific program, the Organizing Committee has prepared an extensive social program that wilI reveal the culture and the natural beauties of Slovenia.
The focus of this book is on mechanical aspects of skeletal fragility related to aging and osteoporosis. Topics include: Age-related changes in trabecular structure and strength; age-related changes in cortical material properties; age-related changes in whole-bone structure; predicting bone strength and fracture risk using image-based methods and finite element analysis; animal models of osteoporosis and aging; age-related changes in skeletal mechano responsiveness; exercise and physical interventions for osteoporosis.
Inverse and crack identification problems are of paramount importance for health monitoring and quality control purposes arising in critical applications in civil, aeronautical, nuclear, and general mechanical engineering. Mathematical modeling and the numerical study of these problems require high competence in computational mechanics and applied optimization. This is the first monograph which provides the reader with all the necessary information. Delicate computational mechanics modeling, including nonsmooth unilateral contact effects, is done using boundary element techniques, which have a certain advantage for the construction of parametrized mechanical models. Both elastostatic and harmonic or transient dynamic problems are considered. The inverse problems are formulated as output error minimization problems and they are theoretically studied as a bilevel optimization problem, also known as a mathematical problem with equilibrium constraints. Beyond classical numerical optimization, soft computing tools (neural networks and genetic algorithms) and filter algorithms are used for the numerical solution. The book provides all the required material for the mathematical and numerical modeling of crack identification testing procedures in statics and dynamics and includes several thoroughly discussed applications, for example, the impact-echo nondestructive evaluation technique. Audience: The book will be of interest to structural and mechanical engineers involved in nondestructive testing and quality control projects as well as to research engineers and applied mathematicians who study and solve related inverse problems. People working on applied optimization and soft computing will find interesting problems to apply to their methods and all necessary material to continue research in this field.
Many problems in scientific computing are intractable with classical numerical techniques. These fail, for example, in the solution of high-dimensional models due to the exponential increase of the number of degrees of freedom. Recently, the authors of this book and their collaborators have developed a novel technique, called Proper Generalized Decomposition (PGD) that has proven to be a significant step forward. The PGD builds by means of a successive enrichment strategy a numerical approximation of the unknown fields in a separated form. Although first introduced and successfully demonstrated in the context of high-dimensional problems, the PGD allows for a completely new approach for addressing more standard problems in science and engineering. Indeed, many challenging problems can be efficiently cast into a multi-dimensional framework, thus opening entirely new solution strategies in the PGD framework. For instance, the material parameters and boundary conditions appearing in a particular mathematical model can be regarded as extra-coordinates of the problem in addition to the usual coordinates such as space and time. In the PGD framework, this enriched model is solved only once to yield a parametric solution that includes all particular solutions for specific values of the parameters. The PGD has now attracted the attention of a large number of research groups worldwide. The present text is the first available book describing the PGD. It provides a very readable and practical introduction that allows the reader to quickly grasp the main features of the method.Throughout the book, the PGD is applied to problems of increasing complexity, and the methodology is illustrated by means of carefully selected numerical examples. Moreover, the reader has free access to the Matlab(c) software used to generate these examples."
Damage to the central nervous system resulting from pathological mechanical loading can occur as a result of trauma or disease. Such injuries lead to significant disability and mortality. The peripheral nervous system, while also subject to injury from trauma and disease, also transduces physiological loading to give rise to sensation, and mechanotransduction is also thought to play a role in neural development and growth. This book gives a complete and quantitative description of the fundamental mechanical properties of neural tissues, and their responses to both physiological and pathological loading. This book reviews the methods used to characterize the nonlinear viscoelastic properties of central and peripheral neural tissues, and the mathematical and sophisticated computational models used to describe this behaviour. Mechanisms and models of neural injury from both trauma and disease are reviewed from the molecular to macroscopic scale. The book provides a comprehensive picture of the mechanical and biological response of neural tissues to the full spectrum of mechanical loading to which they are exposed. This book provides a comprehensive reference for professionals involved in pre prevention of injury to the nervous system, whether this arises from trauma or disease.
The book deals with atomistic properties of solids which are determined by the crystal structure, interatomic forces and atomic displacements influenced by the effects of temperature, stress and electric fields. The book gives equal importance to experimental details and theory. There are full chapters dedicated to the tensor nature of physical properties, mechanical properties, lattice vibrations, crystal structure determination and ferroelectricity. The other crystalline states like nano-, poly-, liquid- and quasi crystals are discussed. Several new topics like nonlinear optics and the Rietveld method are presented in the book. The book lays emphasis on the role of symmetry in crystal properties. Comprehensiveness is the strength of the book; this allows users at different levels a choice of chapters according to their requirements.
F.K. Lehner: A Review of the Linear Theory of Anisotropic Poroelastic Solids. - J.W. Rudnicki: Eshelby's Technique for Analyzing Inhomogeneities in Geomechanics. - Y. Gueguen, M. Kachanov: Effective Elastic Properties of Cracked and Porous Rocks - an Overview. - J.L. Raphanel: 3D Morphology Evolution of Solid-Fluid Interfaces by Pressure Solution. - Y.M. Leroy: An Introduction to the Finite-Element Method for Linear and Non-linear Static Problems. The mechanical behaviour of the earth's upper crust enters into a great variety of questions in different areas of the geological and geophysical sciences as well as in the more applied geotechnical disciplines. This volume presents a selection of papers from a CISM course in Udine on this topic. While each of these chapters will make for a useful contribution in its own right, the present bundle also illustrates, by way of examples, the variety of theoretical concepts and tools that are currently brought to bear on earth deformation studies, ranging from reviews of poroelastic field theory to micro-mechanical and homogenization studies, chemomechanics and interfacial stability theory of soluble solids under stress, and finally to an introduction to the finite element method.
I welcome the opportunity to have my book translated, because of the great emphasis on two-phase flow and heat transfer in the English-speaking world, as related to research, university education, and industrial practice. The 1988 Springer-Verlag edition of "Warmeiibergang beim Kondensieren und beim Sieden" has been enlarged to include additional material on falling film evaporation (Chapter 12) and pressure drop in two-phase flow (Chapter 13). Minor errors in the original text have also been corrected. I would like to express my sincere appreciation to Professor Green, Asso ciate Professor of German at Rensselaer, for his excellent translation and co operation. My thanks go also to Professor Bergles for his close attention to technical and linguistic details. He carefully read the typescript and made many comments and suggestions that helped to improve the manuscript. I hope that the English edition will meet with' a favorable reception and contribute to better understanding and to progress in the field of heat transfer in condensation and boiling. February 1992 K. Stephan Preface to the German-Language Edition This book is a continuation of the series "Heat and Mass Transfer" edited by U. Grigull, in which three volumes have already been published. Its aim is to acquaint students and practicing engineers with heat transfer during condensa tion and boiling, and is intended primarily for students and engineers in mechanical, chemical, electrical, and industrial processing engineering."
Elasticity theory is a classical discipline. The mathematical theory of elasticity in mechanics, especially the linearized theory, is quite mature, and is one of the foundations of several engineering sciences. In the last twenty years, there has been significant progress in several areas closely related to this classical field, this applies in particular to the following two areas. First, progress has been made in numerical methods, especially the development of the finite element method. The finite element method, which was independently created and developed in different ways by sci entists both in China and in the West, is a kind of systematic and modern numerical method for solving partial differential equations, especially el liptic equations. Experience has shown that the finite element method is efficient enough to solve problems in an extremely wide range of applica tions of elastic mechanics. In particular, the finite element method is very suitable for highly complicated problems. One of the authors (Feng) of this book had the good fortune to participate in the work of creating and establishing the theoretical basis of the finite element method. He thought in the early sixties that the method could be used to solve computational problems of solid mechanics by computers. Later practice justified and still continues to justify this point of view. The authors believe that it is now time to include the finite element method as an important part of the content of a textbook of modern elastic mechanics."
This monograph deals with ion induced electron emission from crystalline solids bombarded by fast ions. During the past decade, electron spectroscopy combined with the ion channeling technique has revealed various "messages" about ion solid and electron solid interactions carried by the emitted elec trons. While the ion induced electrons produced by binary encounter pro cesses are of primary interest in this book, closely related topics such as the emission of ion induced Auger electrons from crystal targets are also reviewed, with emphasis on their interdisciplinary aspects, for example, their relation to photoelectron diffraction. In addition to these topics, the book describes the underlying physics and experimental techniques so that it should provide useful information for students and scientists working in ion beam based re search and development in various areas of atomic and solid state physics, materials science, surface science, etc. I am much indebted to the gererations of students who have passed through my laboratory, since they have stimulated me with elementary but essential questions in various phases of the studies. I am also grateful to T. Azuma, Y. Kido, K. Kimura, H. Naramoto, and S. Seki for critical reading of the manuscript. Tsukuba, August 2001 Hiroshi Kudo Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1o Terminology and Table of Symbols . . . . . . . . . . . . . . . . . . . . . . . 5 2. 2. 1 Notes on Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. 2 Frequently Used Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3. Binary Encounter Electron Emission . . . . . . . . . . . . . . . . . . . . . . 7 3. 1 Ion Electron Elastic Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3. 2 Recoil Cross Section of Orbital Electrons . . . . . . . . . . . . . . . . . .
This is a translation of A.I. Lurie's classical Russian textbook on analytical mechanics. It offers a consummate exposition of the subject of analytical mechanics through a deep analysis of its most fundamental concepts. The book has served as a desk text for at least two generations of researchers working in those fields where the Soviet Union accomplished the greatest technological breakthrough of the 20th century - a race into space. Those and other related fields continue to be intensively explored since then, and the book clearly demonstrates how the fundamental concepts of mechanics work in the context of up-to-date engineering problems.
Topics in Model Validation and Uncertainty Quantification, Volume 4, Proceedings of the 30th IMAC, A Conference and Exposition on Structural Dynamics, 2012, the fourth volume of six from the Conference, brings together 19 contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Robustness to Lack of Knowledge in Design Bayesian and Markov Chain Monte Carlo Methods Uncertainty Quantification Model Calibration
At the present time stability theory of deformable systems has been developed into a manifold field within solid mechanics with methods, techniques and approaches of its own. We can hardly name a branch of industry or civil engineering where the results of the stability theory have not found their application. This extensive development together with engineering applications are reflected in a flurry of papers appearing in periodicals as well as in a plenty of monographs, textbooks and reference books. In so doing, overwhelming majority of researchers, con cerned with the problems of practical interest, have dealt with the loss of stability in the thin-walled structural elements. Trying to simplify solution of the problems, they have used two- and one-dimensional theories based on various auxiliary hypotheses. This activity contributed a lot to the preferential development of the stability theory of thin-walled structures and organisation of this theory into a branch of solid mechanics with its own up-to-date methods and trends, but left three-dimensional linearised theory of deformable bodies stability (TL TDBS), methods of solving and solutions of the three-dimensional stability problems themselves almost without attention. It must be emphasised that by three dimensional theories and problems in this book are meant those theories and problems which do not draw two-dimensional plate and shell and one-dimensional rod theories."
Engineering Applications of Residual Stress represents one of eight volumes of technical papers presented at the Society for Experimental Mechanics Annual Conference on Experimental and Applied Mechanics, held at Uncasville, Connecticut, June 13-16, 2011. The full set of proceedings also includes volumes on Dynamic Behavior of Materials, Mechanics of Biological Systems and Materials, Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, MEMS and Nanotechnology; Optical Measurements, Modeling and, Metrology; Experimental and Applied Mechanics, and Thermomechanics and Infra-Red Imaging.
Thermomechanics and Infra-Red Imaging represents one of eight volumes of technical papers presented at the Society for Experimental Mechanics Annual Conference on Experimental and Applied Mechanics, held at Uncasville, Connecticut, June 13-16, 2011. The full set of proceedings also includes volumes on Dynamic Behavior of Materials, Mechanics of Biological Systems and Materials, Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, MEMS and Nanotechnology; Optical Measurements, Modeling and, Metrology; Experimental and Applied Mechanics, and Engineering Applications of Residual Stress.
Defects, dislocations and the general theory.- Approaches to generalized continua.- Generalized continuum modelling of crystal plasticity.- Introduction to discrete dislocation dynamics. The book contains four lectures on generalized continua and dislocation theory, reflecting the treatment of the subject at different scales. G. Maugin provides a continuum formulation of defects at the heart of which lies the notion of the material configuration and the material driving forces of in-homogeneities such as dislocations, disclinations, point defects, cracks, phase-transition fronts and shock waves. C. Sansour and S. Skatulla start with a compact treatment of linear transformation groups with subsequent excursion into the continuum theory of generalized continua. After a critical assessment a unified framework of the same is presented. The next contribution by S. Forest gives an account on generalized crystal plasticity. Finally, H. Zbib provides an account of dislocation dynamics and illustrates its fundamental importance at the smallest scale. In three contributions extensive computational results of many examples are presented.
Dynamic Behavior of Materials represents one of eight volumes of technical papers presented at the Society for Experimental Mechanics Annual Conference on Experimental and Applied Mechanics, held at Uncasville, Connecticut, June 13-16, 2011. The full set of proceedings also includes volumes on Mechanics of Biological Systems and Materials, Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, MEMS and Nanotechnology; Optical Measurements, Modeling and, Metrology; Experimental and Applied Mechanics, Thermomechanics and Infra-Red Imaging, and Engineering Applications of Residual Stress.
Recent developments in engineering and technology have brought about serious and enlarged demands for reliability, safety and economy in wide range of fields such as aeronautics, nuclear engineering, civil and structural engineering, automotive and production industry. This, in turn, has caused more interest in continuum damage mechanics and its engineering applications. This book aims to give a concise overview of the current state of damage mechanics, and then to show the fascinating possibility of this promising branch of mechanics, and to provide researchers, engineers and graduate students with an intelligible and self-contained textbook. The book consists of two parts and an appendix. Part I is concerned with the foundation of continuum damage mechanics. Basic concepts of material damage and the mechanical representation of damage state of various kinds are described in Chapters 1 and 2. In Chapters 3-5, irreversible thermodynamics, thermodynamic constitutive theory and its application to the modeling of the constitutive and the evolution equations of damaged materials are descried as a systematic basis for the subsequent development throughout the book. Part II describes the application of the fundamental theories developed in Part I to typical damage and fracture problems encountered in various fields of the current engineering. Important engineering aspects of elastic-plastic or ductile damage, their damage mechanics modeling and their further refinement are first discussed in Chapter 6. Chapters 7 and 8 are concerned with the modeling of fatigue, creep, creep-fatigue and their engineering application. Damage mechanics modeling of complicated crack closure behavior in elastic-brittle and composite materials are discussed in Chapters 9 and 10. In Chapter 11, applicability of the local approach to fracture by means of damage mechanics and finite element method, and the ensuing mathematical and numerical problems are briefly discussed. A proper understanding of the subject matter requires knowledge of tensor algebra and tensor calculus. At the end of this book, therefore, the foundations of tensor analysis are presented in the Appendix, especially for readers with insufficient mathematical background, but with keen interest in this exciting field of mechanics. "
Modeling complex biological, chemical, and physical systems, in the context of spatially heterogeneous mediums, is a challenging task for scientists and engineers using traditional methods of analysis. Modeling in Applied Sciences is a comprehensive survey of modeling large systems using kinetic equations, and in particular the Boltzmann equation and its generalizations. An interdisciplinary group of leading authorities carefully develop the foundations of kinetic models and discuss the connections and interactions between model theories, qualitative and computational analysis and real-world applications. This book provides a thoroughly accessible and lucid overview of the different aspects, models, computations, and methodology for the kinetic-theory modeling process. Topics and Features: * Integrated modeling perspective utilized in all chapters * Fluid dynamics of reacting gases * Self-contained introduction to kinetic models * Becker-Doring equations * Nonlinear kinetic models with chemical reactions * Kinetic traffic-flow models * Models of granular media * Large communication networks * Thorough discussion of numerical simulations of Boltzmann equation This new book is an essential resource for all scientists and engineers who use large-scale computations for studying the dynamics of complex systems of fluids and particles. Professionals, researchers, and postgraduates will find the book a modern and authoritative guide to the topic.
Experimental and Applied Mechanics represents one of eight volumes of technical papers presented at the Society for Experimental Mechanics Annual Conference on Experimental and Applied Mechanics, held at Uncasville, Connecticut, June 13-16, 2011. The full set of proceedings also includes volumes on Dynamic Behavior of Materials, Mechanics of Biological Systems and Materials, Challenges in Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, MEMS and Nanotechnology; Optical Measurements, Modeling and, Metrology; Experimental and Applied Mechanics, Thermomechanics and Infra-Red Imaging, and Engineering Applications of Residual Stress.
This bookpresents a concise, yet thorough, reference for all heat transfer coefficient correlations and data for all types of cylinders: vertical, horizontal, and inclined. This book covers all natural convection heat transfer laws for vertical and inclined cylinders and is an excellent resource for engineers working in the area of heat transfer engineering." |
![]() ![]() You may like...
Enterprise Level Security 1 & 2
Kevin Foltz, William R. Simpson
Paperback
R1,504
Discovery Miles 15 040
Industrial Internet of Things…
Anand Sharma, Sunil Kumar Jangir, …
Hardcover
R4,406
Discovery Miles 44 060
Embedded Systems Circuits and…
Julio Sanchez, Maria P. Canton
Paperback
R3,353
Discovery Miles 33 530
Smart Connected World - Technologies and…
Sarika Jain, San Murugesan
Hardcover
R3,896
Discovery Miles 38 960
|