![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > General
In the recent decades, computational procedures have been applied to an increasing extent in engineering and the physical sciences. Mostly, two separate fields have been considered, namely, the analysis of solids and structures and the analysis of fluid flows. These continuous advances in analyses are of much interest to physicists, mathematicians and in particular, engineers. Also, computational fluid and solid mechanics are no longer treated as entirely separate fields of applications, but instead, coupled fluid and solid analysis is being pursued. The objective of the Book Series is to publish monographs, textbooks, and proceedings of conferences of archival value, on any subject of computational fluid dynamics, computational solid and structural mechanics, and computational multi-physics dynamics. The publications are written by and for physicists, mathematicians and engineers and are to emphasize the modeling, analysis and solution of problems in engineering.
This monograph deals with diverse applications of holographic interferome try in experimental solid mechanics. Holographic interferometry has experienced a development of twenty years. It has enjoyed success and suffered some disappointments mainly due to early overestimation of its potential. At present, development of holo graphic interferometry is progressing primarily as a technique for quantita tive measurements. This is what motivated us to write this book - to ana lyze the quantitative methods of holographic interferometry. The fringe patterns obtained in holographic interferometry are graphi cally descriptive. In the general case, however, because they contain infor mation on the total vectors of displacement for points on the surface of a stressed body, the interpretation of these interferograms is much more complicated than in typical conventional interferometry. In addition, the high sensitivity of the method imposes new requirements on the loading of the objects under study. New approaches to designing loading fixtures are needed in many cases to ensure the desired loading conditions. The wealth of information obtained in holographic interferometry necessitates the use of modern computational mathematics. Therefore, practical implementation of the various methods of holographic interferometry must overcome sub stantial difficulties requiring adequate knowledge in diverse areas of science such as coherent optics, laser technology, mechanics, and applied mathe matics. Experimental methods play a significant role in solid mechanics."
Wood-plastic composite (WPC) is a non-recyclable composite material lumber or timber made of recycled plastic and wood wastes which has become one of the most dynamic sectors of the plastics industry in this decade. It is used in numerous applications, such as, outdoor deck floors, railings, fences, landscaping timbers, park benches, window and door frames. This book starts with a brief glimpse at the basic structures and properties of WPCs. Aspects such as surface treatment, machinery used and testing types of WPCs are also covered. The following chapters of the book give a view of foam technology, flame retardant properties and colour retardant properties of WPCs. The way morphology affects or controls the physical and mechanical behaviours of the finished materials is discussed. Finally, the authors give an overview of the applications of wood-plastic composites in daily life. The book may serve as a source book for scientists wishing to work in this field.
Plate structures are used in almost every area of engineering, including aerospace and naval architecture, civil engineering, and electronics. These structures have diverse geometries and have to withstand a wide range of loading conditions. This book provides the theoretical foundations of the theories of plates manufactured from various materials, outlines and illustrates the methods used for the analysis of these structures, and emphasizes designs and solution techniques available to an engineer. The book is written for engineers working in industry, graduate students at aerospace, mechanical, civil engineering and naval architecture departments, and investigators interested in the development of the theory of plates and related subjects. While the mathematical modeling employed in the book is understandable to both engineers and graduate students, the book also provides insight into relevant phenomena and theories underlying plate structures. Thus, the reader is equipped with a thorough understanding of the problems and appropriate assumptions, even if the analysis is conducted using commercially available software codes. In addition, the book includes numerous analytical solutions that can confidently be used in the design of plate structures. The combination of theoretical insight and references to practical problems makes the book equally attractive to academia and industry.
Both experimental and theoretical investigations make it clear that mesoscale materials, that is, materials at scales intermediate between atomic and bulk matter, do not always behave in ways predicted by conventional theories of shock compression. At these scales, shock waves interact with local material properties and microstructure to produce a hierarchy of dissipative structures such as inelastic deformation fields, randomly distributed lattice defects, and residual stresses. A macroscopically steady planar shock wave is neither plane nor steady at the mesoscale. The chapters in this book examine the assumptions underlying our understanding of shock phenomena and present new measurements, calculations, and theories that challenge these assumptions. They address such questions as: - What are the experimental data on mesoscale effects of shocks, and what are the implications? - Can one formulate new mesoscale theories of shock dynamics? - How would new mesoscale theories affect our understanding of shock-induced phase transitions or fracture? - What new computational models will be needed for investigating mesoscale shocks?
With the rap1d development of computational capab1lities, nonl1near f1nite element analys1s 1n structural mechan1CS has become an 1mportant field of research. Its objective is the real1stic assessment of the actual behaV10r of structures by numerical methods. Th1S requires that all nonlinear effects, such as the nonl1near character1stics of the mater1al and large deformations be taken 1nto account. The act1vities in th1S f1eld be1ng worldw1de, d1rect 1nteraction between the various research groups 1S necessary to coordinate future research and to overcome the time gap between the generat10n of new results and the1r appearance 1n the 11terature. The f1rst U.S.-Germany Sympos1um was held 1n 1976 at the Massachusetts Inst1tute of Technology. Under the general to- P1C "Formulat1ons and Computat1onal Algorithms in Fin1te Ele- ment Analysis" 1t prov1ded an opportun1ty for about 20 re- searchers from each country to present lectures, hold discus- sions, and establ1sh mutual contacts. The success of th1S first sympos1um was so encourag1ng that 1t seemed natural to organ- 1ze a second bilateral meet1ng, this time 1n Germany, and to 1nv1te researchers from other European countr1es as well.
This reference tutorial contains modern experimental approaches to analysis of strain-stress distribution based on interference-optical methods of registration of strain or displacement fields, including coherent-optical techniques (holographic interferometry, speckle photography, electronic digital speckle interferometry techniques) and photoelastic methods as well as the shadow optical method of caustic. The book describes the theory, efficient scope of application in the every-day practice and the problems of further development of these techniques. Much attention is paid to new and promising advanced developments in the field of observation and computational methods for study of residual stress, determination of fracture mechanics parameters and material deformation characteristics. The content corresponds to the course of lectures delivered by the author at the N.E. Bauman Moscow State Technical University. It is intended for technical university students, research engineers and postgraduate students who are doing analysis of strain-stress state and strength of structural elements.
In recent years microelectromechanical systems (MEMS) have emerged as a new technology with enormous application potential. MEMS manufacturing techniques are essentially the same as those used in the semiconductor industry, therefore they can be produced in large quantities at low cost. The added benefits of lightweight, miniature size and low energy consumption make MEMS commercialization very attractive. Modeling and simulation is an indispensable tool in the process of studying these new dynamic phenomena, development of new microdevices and improvement of the existing designs. MEMS technology is inherently multidisciplinary since operation of microdevices involves interaction of several energy domains of different physical nature, for example, mechanical, fluidic and electric forces. Dynamic behavior of contact-type electrostatic microactuators, such as a microswitches, is determined by nonlinear fluidic-structural, electrostatic-structural and vibro-impact interactions. The latter is particularly important: Therefore it is crucial to develop accurate computational models for numerical analysis of the aforementioned interactions in order to better understand coupled-field effects, study important system dynamic characteristics and thereby formulate guidelines for the development of more reliable microdevices with enhanced performance, reliability and functionality.
This book covers the essential topics for a second-level course in strength of materials or mechanics of materials, with an emphasis on techniques that are useful for mechanical design. Design typically involves an initial conceptual stage during which many options are considered. At this stage, quick approximate analytical methods are crucial in determining which of the initial proposals are feasible. The ideal would be to get within 30% with a few lines of calculation. The designer also needs to develop experience as to the kinds of features in the geometry or the loading that are most likely to lead to critical conditions. With this in mind, the author tries wherever possible to give a physical and even an intuitive interpretation to the problems under investigation. For example, students are encouraged to estimate the location of weak and strong bending axes and the resulting neutral axis of bending before performing calculations, and the author discusses ways of getting good accuracy with a simple one degree of freedom Rayleigh-Ritz approximation. Students are also encouraged to develop a feeling for structural deformation by performing simple experiments in their outside environment, such as estimating the radius to which an initially straight bar can be bent without producing permanent deformation, or convincing themselves of the dramatic difference between torsional and bending stiffness for a thin-walled open beam section by trying to bend and then twist a structural steel beam by hand-applied loads at one end. In choosing dimensions for mechanical components, designers will expect to be guided by criteria of minimum weight, which with elementary calculations, generally leads to a thin-walled structure as an optimal solution. This consideration motivates the emphasis on thin-walled structures, but also demands that students be introduced to the limits imposed by structural instability. Emphasis is also placed on the effect of manufacturing errors on such highly-designed structures - for example, the effect of load misalignment on a beam with a large ratio between principal stiffness and the large magnification of initial alignment or loading errors in a strut below, but not too far below the buckling load. Additional material can be found on http:
//extras.springer.com/.
The book provides a rigorous axiomatic approach to continuum mechanics under large deformation. In addition to the classical nonlinear continuum mechanics - kinematics, fundamental laws, the theory of functions having jump discontinuities across singular surfaces, etc. - the book presents the theory of co-rotational derivatives, dynamic deformation compatibility equations, and the principles of material indifference and symmetry, all in systematized form. The focus of the book is a new approach to the formulation of the constitutive equations for elastic and inelastic continua under large deformation. This new approach is based on using energetic and quasi-energetic couples of stress and deformation tensors. This approach leads to a unified treatment of large, anisotropic elastic, viscoelastic, and plastic deformations. The author analyses classical problems, including some involving nonlinear wave propagation, using different models for continua under large deformation, and shows how different models lead to different results. The analysis is accompanied by experimental data and detailed numerical results for rubber, the ground, alloys, etc. The book will be an invaluable text for graduate students and researchers in solid mechanics, mechanical engineering, applied mathematics, physics and crystallography, as also for scientists developing advanced materials.
The dynamics of transition from laminar to turbulent flow remains to this day a major challenge in theoretical and applied mechanics. A series of IUTAM symposia held over the last twenty five years at well-known Centres of research in the subject - Novosibirsk, Stuttgart, Toulouse, Sendai and Sedona (Arizona) - has proved to be a great catalyst which has given a boost to research and our understanding of the field. At this point of time, the field is changing significantly with several emerging directions. The sixth IUTAM meeting in the series, which was held at the Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India, focused on the progress after the fifth meeting held at Sedona in 1999. The s- posium, which adhered to the IUTAM format of a single session, included seven invited lectures, fifty oral presentations and eight posters. During the course of the symposium, the following became evident. The area of laminar-turbulent transition has progressed considerably since 1999. Better theoretical tools, for handling nonlinearities as well as transient behaviour are now available. This is accompanied by an en- mous increase in the level of sophistication of both experiments and direct numerical simulations. The result has been that our understanding of the early stages of the transition process is now on much firmer footing and we are now able to study many aspects of the later stages of the transition process.
The authors systematically describe the general principles of Kolsky bars, or split Hopkinson bars, which are widely used for obtaining dynamic material properties. Modifications are introduced for obtaining reliable data. Specific experiment design guidelines are provided to subject the specimen to desired testing conditions. Detailed Kolsky-bar examples are given for different classes of materials (brittle, ductile, soft, etc) and for different loading conditions (tension, torsion, triaxial, high/low temperatures, intermediate strain rate, etc). The Kolsky bars used for dynamic structural characterization are briefly introduced. A collection of dynamic properties of various materials under various testing conditions is included which may serve as a reference database. This book assists both beginners and experienced professionals in characterizing high-rate material response with high quality and consistency. Readers who may benefit from this work include university students, instructors, R & D professionals, and scholars/engineers in solid mechanics, aerospace, civil and mechanical engineering, as well as materials science and engineering.
The subject of Computational Contact Mechanics has many facets. Its main impact lies in the transfer of knowledge form theoretical research to applied sciences, and from there to industry. The application fields are literally countless, ranging from classical engineering to biomechanics and nano-sciences. The remarkable increase of computer power in recent years has been instrumental in enabling the development of simulation-based analysis in current design activity. This still involves tremendous effort in research, which focuses on, for example, multi-field and multi-scale problems, algorithmic robustness, and geometrical accuracy. Moreover, several aspects of Contact Mechanics, Debonding and Fracture Mechanics, have been combined to offer new enhanced possibilities to the computer simulation of complex phenomena. With these contributions of prominent scientists, this book offers a wide overview on the ongoing research at the highest level in the field.
Significant changes have occurred in the approach to structural analysis over the last twenty years. These changes have been brought about by a more general understanding of the nature of the problem and the develop ment of the digital computer. Almost all s ructural engineering offices throughout the world would now have access to some form of digital computer, ranging from hand-held programmable calculators through to the largest machines available. Powerful microcomputers are also widely available and many engineers and students have personal computers as a general aid to their work. Problems in structural analysis have now been formulated in such a way that the solution is available through the use of the computer, largely by what is known as matrix methods of structural analysis. It is interesting to note that such methods do not put forward new theories in structural analysis, rather they are a restatement of classical theory in a manner that can be directly related to the computer. This book begins with the premise that most structural analysis will be done on a computer. This is not to say that a fundamental understanding of structural behaviour is not presented or that only computer-based tech niques are given. Indeed, the reverse is true. Understanding structural behaviour is an underlying theme and many solution techniques suitable for hand computation, such as moment distribution, are retained. The most widely used method of computer-based structural analysis is the matrix stiffness method."
This book presents a critical review on the development and
application of hygrothermal analysis methods to simulate the
coupled transport processes of Heat, Air, and Moisture (HAM)
transfer for one or multidimensional cases.
The topological derivative is defined as the first term (correction) of the asymptotic expansion of a given shape functional with respect to a small parameter that measures the size of singular domain perturbations, such as holes, inclusions, defects, source-terms and cracks. Over the last decade, topological asymptotic analysis has become a broad, rich and fascinating research area from both theoretical and numerical standpoints. It has applications in many different fields such as shape and topology optimization, inverse problems, imaging processing and mechanical modeling including synthesis and/or optimal design of microstructures, fracture mechanics sensitivity analysis and damage evolution modeling. Since there is no monograph on the subject at present, the authors provide here the first account of the theory which combines classical sensitivity analysis in shape optimization with asymptotic analysis by means of compound asymptotic expansions for elliptic boundary value problems. This book is intended for researchers and graduate students in applied mathematics and computational mechanics interested in any aspect of topological asymptotic analysis. In particular, it can be adopted as a textbook in advanced courses on the subject and shall be useful for readers interested on the mathematical aspects of topological asymptotic analysis as well as on applications of topological derivatives in computation mechanics.
J.M. Burgers (1895--1981) is regarded as one of the leading scientists in the field of fluid mechanics, contributing many important results, a number of which still bear his name. However, the work of this outstanding scientist was mostly published in the Proceedings and Transactions of The Royal Netherlands Academy of Sciences, of which he was a distinguished member. Nowadays, this work is almost impossible to obtain through the usual library channels. Therefore, the editors have decided to reissue the most important work of J.M. Burgers, which gives the reader access to the original papers which led to important results, now known as the Burgers Equation, the Burgers Vector and the Burgers Vortex. Further, the book contains a biography of J.M. Burgers, which provides the reader with both information on his scientific life, as well as a rounded impression of the many activities which J.M. Burgers performed or was involved in outside his science.
This book describes behavior of crystalline solids primarily via methods of modern continuum mechanics. Emphasis is given to geometrically nonlinear descriptions, i.e., finite deformations. Primary topics include anisotropic crystal elasticity, plasticity, and methods for representing effects of defects in the solid on the material's mechanical response. Defects include crystal dislocations, point defects, twins, voids or pores, and micro-cracks. Thermoelastic, dielectric, and piezoelectric behaviors are addressed. Traditional and higher-order gradient theories of mechanical behavior of crystalline solids are discussed. Differential-geometric representations of kinematics of finite deformations and lattice defect distributions are presented. Multi-scale modeling concepts are described in the context of elastic and plastic material behavior. Representative substances towards which modeling techniques may be applied are single- and poly- crystalline metals and alloys, ceramics, and minerals. This book is intended for use by scientists and engineers involved in advanced constitutive modeling of nonlinear mechanical behavior of solid crystalline materials. Knowledge of fundamentals of continuum mechanics and tensor calculus is a prerequisite for accessing much of the text. This book could be used as supplemental material for graduate courses on continuum mechanics, elasticity, plasticity, micromechanics, or dislocation mechanics, for students in various disciplines of engineering, materials science, applied mathematics, and condensed matter physics.
A "Sonderforschungsbereich" (SFB) is a programme of the "Deutsche For schungsgemeinschaft" to financially support a concentrated research effort of a number of scientists located principally at one University, Research La boratory or a number of these situated in close proximity to one another so that active interaction among individual scientists is easily possible. Such SFB are devoted to a topic, in our case "Deformation and Failure in Metallic and Granular M aterialK', and financing is based on a peer reviewed proposal for three (now four) years with the intention of several prolongations after evaluation of intermediate progress and continuation reports. An SFB is terminated in general by a formal workshop, in which the state of the art of the achieved results is presented in oral or I and poster communications to which also guests are invited with whom the individual project investigators may have collaborated. Moreover, a research report in book form is produced in which a number of articles from these lectures are selected and collected, which present those research results that withstood a rigorous reviewing pro cess (with generally two or three referees). The theme deformation and failure of materials is presented here in two volumes of the Lecture Notes in Applied and Computational Mechanics by Springer Verlag, and the present volume is devoted to granular and porous continua. The complementary volume (Lecture Notes in Applied and Com putational Mechanics, vol. 10, Eds. K. HUTTER & H."
The book contains 14 invited contributions written by distinguished authors who participated in the Second International Conference on Textile Composites and Inflated Structures held in Stuttgart, 2-4 October 2005. The book includes state-of-the-art contributions written by international experts in the field of design, analysis and construction of textile composites and inflatable structures. The different chapters discuss recent progress and future research directions the field.
The scope of this book is based on the keynote lectures delivered during the Inter national Symposium on Anisotropic Behaviour of Damaged Materials ABDM, held in Krakow-Przegorzaiy, Poland, September 9-11, 2002. The Symposium was organized by the Solid Mechanics Division of the Institute of Mechanics and Machine Design - Cracow University of Technology, under aus pices of the Dean of the Faculty of Mechanical Engineering, Cracow University of Technology, Prof. S. Michalowski. The Co-organizers of the ABDM Symposium were: * Martin-Luther-Universitat Halle-Wittenberg, * Centre of Excellence for Advanced Materials and Structures AMAS at the In stitute of Fundamental Technological Research of the Polish Academy of Sci ences, Warsaw, * Committee of Mechanics of the Polish Academy of Sciences, Warsaw. Ten chapters of this book in their present form essentially exceed lectures de livered at the Symposium. They should rather be read as not only author's recent achievements in the field, but also the state of art and synthesis done by the lead ers in the mechanics community. The mixed formula of the Symposium, namely: the invited lectures and presentations of the original papers by the participants was used. 23 original papers, published in the Symposium Proceedings on CD, exhaust the full scope of the ABDM Symposium. The present book provides a survey of various damage models focusing on the damage response in anisotropic materials as well as damage-induced anisotropy.
Addresses fundamentals and advanced topics relevant to the behavior of materials under in-service conditions such as impact, shock, stress and high-strain rate deformations. Deals extensively with materials from a microstructure perspective which is the future direction of research today.
This book is devoted to the deformation and failure in metallic materials, summarizing the results of a research programme financed by the "Deutsche Forschungsgemeinschaft." It presents the recent engineering as well as mathematical key aspects of this field for a broad community. Its main focus is on the constitutive behaviour as well as the damage and fracture of metallic materials, covering their mathematical foundation, modelling and numerics, but also relevant experiments and their verification.
This book presents a systematic approach to numerical solution for a wide range of spatial contact problems of geotechnics. On the basis of the boundary element method new techniques and effective computing algorithms are considered. Special attention is given to the formulation and analysis of the spatial contact models for elastic bases. Besides the classical schemes of contact deformation, new contact models are discussed for spatially nonhomogeneous and nonlinearly elastic media properly describing soil properties.
In the preliminary stage of designing new structural hardware to perform a given mission in a fluctuating load environment, there are several factors that the designer should consider. Trade studies for different design configurations should be performed and, based on strength and weight considerations, among others, an optimum configuration selected. The selected design must withstand the environment in question without failure. Therefore, a comprehensive structural analysis that consists of static, dynamic, fatigue, and fracture is necessary to ensure the integrity of the structure. Engineers must also consider the feasibility of fabricating the structural hardware in the material selection process. During the past few decades, fracture mechanics has become a necessary discipline for the solution of many structural problems in which the survivability of structure containing pre-existing flaws is of great interest. These problems include structural failures resulting from cracks that are inherent in the material, or defects that are introduced in the part due to improper handling or rough machining, that must be assessed through fracture mechanics concepts. |
![]() ![]() You may like...
Constitutive Modeling of Engineering…
Vladimir Buljak, Gianluca Ranzi
Paperback
R4,081
Discovery Miles 40 810
Proceedings of 16th Asian Congress of…
L. Venkatakrishnan, Sekhar Majumdar, …
Hardcover
R4,511
Discovery Miles 45 110
Vibration Fatigue by Spectral Methods…
Janko Slavic, Miha Boltezar, …
Paperback
R4,114
Discovery Miles 41 140
Computational Structural Mechanics…
Snehashish Chakraverty, Karan Kumar Pradhan
Paperback
|