![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics > General
Modern Luminescence: From Fundamental Concepts to Materials and Applications, Volume One, Concepts and Luminescence is a multivolume work that reviews the fundamental principles, properties and applications of luminescent materials. Topics addressed include key concepts of luminescence, with a focus on important characterization techniques to understand a wide category of luminescent materials. The most relevant luminescent materials, such as transition metals, rare-earth materials, actinide-based materials, and organic materials are discussed, along with emerging applications of luminescent materials in biomedicine, solid state devices, and the development of hybrid materials. This book is an important introduction to the underlying scientific concepts needed to understand luminescence, such as atomic and molecular physics and chemistry. Other topics explored cover the latest advances in materials characterization methods, such as Raman spectroscopy, ultrafast spectroscopy, nonlinear spectroscopy, and more. Finally, there is a focus on the materials physics of nanophotonics.
Aggregation-Induced Emission (AIE): A Practical Guide introduces readers to the topic, guiding them through fundamental concepts and the latest advances in applications. The book covers concepts, principles and working mechanisms of AIE in AIE-active luminogens, with different classes of AIE luminogens reviewed, including polymers, three-dimensional frameworks (MOFs and COFs) and supramolecular gels. Special focus is given to the structure-property relationship, structural design strategies, targeted properties and application performance. The book provides readers with a deep understanding, not only on the fundamental principles of AIE, but more importantly, on how AIE luminogens and AIE properties can be incorporated in material development.
Luminescent Metal Nanoclusters: Synthesis, Characterization, and Applications provides a comprehensive accounting of various protocols used for the synthesis of metal nanoclusters, their characterization techniques, toxicity evaluation and various applications and future prospects. The book provides detailed experimental routes, along with mechanisms on the formation of benign metallic clusters using biomaterials and a comprehensive review regarding the preparation, properties and prospective applications of these nano clusters in various fields, including therapeutic applications. Various methods to protect nanocluster materials to increase their stability are emphasized, including the incorporation of ligands (protein, small molecule, DNA, thiols). This book addresses a gap in the current literature by bringing together the preparation, characterization and applications of all the possible types of reported metal nanoclusters and their hybrids. It is suitable for materials scientists and engineers in academia and those working in research and development in industry. It may also be of interest to those working in the interdisciplinary nanotechnology community, such as physical chemists.
Radiation Dosimetry Phosphors provides an overview of the synthesis, properties and applications of materials used for radiation dosimetry and reviews the most appropriate phosphor materials for each radiation dosimetry technique. The book describes the available phosphors used commercially for their applications in the medical field for dose measurements. Although radiation dosimetry phosphors are commercially available, continuous efforts have been made by the worldwide research community to develop new materials or improve already existing materials used in different areas with low or high levels of radiation. Moreover, researchers are still working on developing dosimetric phosphors for OSL, ML, LL and RPL dosimetry. This book provides an overall view of the phosphors available, low cost synthesis methods, mechanisms involved, emerging trends and new challenges for the development of emerging materials for radiation dosimetry. It is suitable for those working in academia and R&D laboratories in the discipline of materials science and engineering, along with practitioners working in radiation and dosimetry.
Sensors for Ranging and Imaging is a comprehensive textbook and professional reference that provides a solid background in active sensing technology. This new edition has been comprehensively updated and expanded to include the latest radar technologies. Beginning with an introductory section on signal generation, filtering and modulation, the book follows with chapters on radiometry (infrared and microwave) as a background to the active sensing process. The core of the book is concerned with active sensing, starting with active ranging and active imaging sensors (operational principles, components), and goes through the derivation of the radar (and lidar) range equations, and the detection of echo signals, both fundamental to the understanding of radar, sonar and lidar imaging. Further chapters cover signal propagation of both electromagnetic and acoustic energy, and target and clutter characteristics. The remainder of the book involves the basics of the range measurement process, active imaging with an emphasis on noise and linear frequency modulation techniques, Doppler processing, and target tracking. This systematic and thorough guide to ranging and imaging sensors is invaluable for graduate students studying sensing systems and industry professionals wishing to expand or update their knowledge. It offers clear, detailed explanations alongside worked examples to provide readers with an in-depth understanding of the material.
Principles of Electron Optic: Volume Three: Wave Optics, discusses this essential topic in microscopy to help readers understand the propagation of electrons from the source to the specimen, and through the latter (and from it) to the image plane of the instrument. In addition, it also explains interference phenomena, notably holography, and informal coherence theory. This third volume accompanies volumes one and two that cover new content on holography and interference, improved and new modes of image formation, aberration corrected imaging, simulation, and measurement, 3D-reconstruction, and more. The study of such beams forms the subject of electron optics, which divides naturally into geometrical optics where effects due to wavelength are neglected, with wave optics considered.
Principles of Electron Optics: Second Edition, Advanced Wave Optics provides a self-contained, modern account of electron optical phenomena with the Dirac or Schroedinger equation as a starting point. Knowledge of this branch of the subject is essential to understanding electron propagation in electron microscopes, electron holography and coherence. Sections in this new release include, Electron Interactions in Thin Specimens, Digital Image Processing, Acquisition, Sampling and Coding, Enhancement, Linear Restoration, Nonlinear Restoration - the Phase Problem, Three-dimensional Reconstruction, Image Analysis, Instrument Control, Vortex Beams, The Quantum Electron Microscope, and much more.
Advances in Chemical Mechanical Planarization (CMP), Second Edition provides the latest information on a mainstream process that is critical for high-volume, high-yield semiconductor manufacturing, and even more so as device dimensions continue to shrink. The second edition includes the recent advances of CMP and its emerging materials, methods, and applications, including coverage of post-CMP cleaning challenges and tribology of CMP. This important book offers a systematic review of fundamentals and advances in the area. Part one covers CMP of dielectric and metal films, with chapters focusing on the use of current and emerging techniques and processes and on CMP of various materials, including ultra low-k materials and high-mobility channel materials, and ending with a chapter reviewing the environmental impacts of CMP processes. New content addressed includes CMP challenges with tungsten, cobalt, and ruthenium as interconnect and barrier films, consumables for ultralow topography and CMP for memory devices. Part two addresses consumables and process control for improved CMP and includes chapters on CMP pads, diamond disc pad conditioning, the use of FTIR spectroscopy for characterization of surface processes and approaches for defection characterization, mitigation, and reduction. Advances in Chemical Mechanical Planarization (CMP), Second Edition is an invaluable resource and key reference for materials scientists and engineers in academia and R&D.
Structured Light for Optical Communication highlights principles and applications in the rapidly evolving field of structured light in wide-ranging contexts, from classical forms of communication to new frontiers of quantum communication. Besides the basic principles and applications, the book covers the background of structured light in its most common forms, as well as state-of-the-art developments. Structured light has been hailed as affording outstanding prospects for the realization of high bandwidth communication, enhanced tools for more highly secure cryptography, and exciting opportunities for providing a reliable platform for quantum computing. This book is a valuable resource for graduate students and other active researchers, as well as others who may be interested in learning about this cutting-edge research field.
Dielectric Metamaterials and Metasurfaces in Transformation Optics and Photonics addresses the complexity of electromagnetic responses from arrays of dielectric resonators, which are often omitted from consideration when using simplified metamaterials concepts. The book's authors present a thorough consideration of dielectric resonances in different environments which is needed to design optical and photonic devices. Dielectric metamaterials and photonic crystals are compared, with their effects analyzed. Design approaches and examples of designs for invisibility cloaks based on artificial media are also included. Current challenge of incorporating artificial materials into transformation optics-based and photonics devices are also covered.
Optical Communications in the 5G Era provides an up-to-date overview of the emerging optical communication technologies for 5G next-generation wireless networks. It outlines the emerging applications of optical networks in future wireless networks, state-of-the-art optical communication technologies, and explores new R&D opportunities in the field of converged fixed-mobile networks. Optical Communications in the 5G Era is an ideal reference for university researchers, graduate students, and industry R&D engineers in optical communications, photonics, and mobile and wireless communications who need a broad and deep understanding of modern optical communication technologies, systems, and networks that are fundamental to 5G and beyond.
Light scattering is one of the most well-studied phenomena in nature. It occupies a central place in optical physics, and plays a key role in multiple fields of science and engineering. This volume presents a comprehensive introduction to the subject. For the first time, the authors bring together in a self-contained and systematic manner, the physical concepts and mathematical tools that are used in the modern theory of light scattering and transport, presenting them in a clear, accessible style. The power of these tools is demonstrated by a framework that links various aspects of the subject: scattering theory to radiative transport, radiative transport to diffusion, and field correlations to the statistics of speckle patterns. For graduate students and researchers in optical physics and optical engineering, this book is an invaluable resource on the interaction of light with complex media and the theory of light scattering in disordered and complex systems.
Optical Materials, Second Edition, presents, in a unified form, the underlying physical and structural processes that determine the optical behavior of materials. It does this by combining elements from physics, optics, and materials science in a seamless manner, and introducing quantum mechanics when needed. The book groups the characteristics of optical materials into classes with similar behavior. In treating each type of material, the text pays particular attention to atomic composition and chemical makeup, electronic states and band structure, and physical microstructure so that the reader will gain insight into the kinds of materials engineering and processing conditions that are required to produce a material exhibiting a desired optical property. The physical principles are presented on many levels, including a physical explanation, followed by formal mathematical support and examples and methods of measurement. The reader may overlook the equations with no loss of comprehension, or may use the text to find appropriate equations for calculations of optical properties.
Organometallic Luminescence: A Case Study of Alq3, an OLED Reference Material contains many discoveries on Alq3, an important organometallic material to the optoelectronics community that includes insights that can be applied to other organic compounds. The book contains groundbreaking research from the author's own investigation into the Alq3 material that is based on years of experiments, the results of which initially escaped any logical explanation. The book describes a simple method based on photoluminescence to observe optical properties in Alq3, also covering the optical properties of absorption and long decay from theoretical and experimental perspectives.
Photonics, a volume in the Interface Transmission Tutorial Book series, describes the science of photonic transmission properties of the interfaces of composite materials systems and devices. The book's authors review the general analysis methods of interface transmission, give many examples, and apply these methods to photonic applications. Applications discussed include photonic crystals, materials, devices and circuits.
An in-depth look at the luminescence of phosphor materials for applications in optical devices, sensors, and medical technologies. Optical Properties of Phosphate and Pyrophosphate Compounds gives a broad introduction to pyrophosphates and phosphate-based phosphors, including their fundamental properties, material composition, synthesis methods, characterization techniques, and applications in optical devices and technologies. The text describes the development of the materials' shape and size, as well as crucial characterization techniques for key applications. Additionally, it includes essential information about recently used single and mixed cations pyrophosphate and phosphate compounds. This book is suitable for researchers working in materials science, engineering, materials chemistry, and physics. It may also be helpful to engineers and chemists working in R&D for solid state lighting.
Optical MEMS are micro-electromechanical systems merged with micro-optics. They allow sensing or manipulating optical signals on a very small size scale using integrated mechanical, optical, and electrical systems and hold great promise specifically in biomedical applications, among others. This book describes the current state of optical MEMS in chemical and biomedical analysis with topics covered including fabrication and manufacturing technology for optical MEMS; electrothermally-actuated MEMS scanning micromirrors and their applications in endoscopic optical coherence tomography imaging; electrowetting-based microoptics; microcameras; biologically inspired optical surfaces for miniaturized optical systems; tuning nanophotonic cavities with nanoelectromechanical systems; quantum dot nanophotonics - micropatterned excitation, microarray imaging and hyperspectral microscopy; photothermal microfluidics; optical manipulation for biomedical applications; polymer-based optofluidic lenses; and nanostructured aluminum oxide-based optical biosensing and imaging. Bringing together topics representing the most exciting progress made and current trends in the field in recent years, this book is an essential addition to the bookshelves of researchers and advanced students working on developing, manufacturing or applying optical MEMS and other sensors.
Metal Halide Perovskites for Generation, Manipulation and Detection of Light covers the current state and future prospects of lead halide perovskite photonics and photon sources, both from an academic and industrial point-of-view. Advances in metal halide perovskite photon sources (lasers) based on thin films, microcrystals and nanocrystals are comprehensively reviewed, with leading experts contributing current advances in theory, fundamental concepts, fabrication techniques, experiments and other important research innovations. This book is suitable for graduate students, researchers, scientists and engineers in academia and R&D in industry working in the disciplines of materials science and engineering.
Recent advancements in imaging techniques and image analysis has broadened the horizons for their applications in various domains. Image analysis has become an influential technique in medical image analysis, optical character recognition, geology, remote sensing, and more. However, analysis of images under constrained and unconstrained environments require efficient representation of the data and complex models for accurate interpretation and classification of data. Deep learning methods, with their hierarchical/multilayered architecture, allow the systems to learn complex mathematical models to provide improved performance in the required task. The Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments provides a critical examination of the latest advancements, developments, methods, systems, futuristic approaches, and algorithms for image analysis and addresses its challenges. Highlighting concepts, methods, and tools including convolutional neural networks, edge enhancement, image segmentation, machine learning, and image processing, the book is an essential and comprehensive reference work for engineers, academicians, researchers, and students.
Nonlinear Optics, Fourth Edition, is a tutorial-based introduction to nonlinear optics that is suitable for graduate-level courses in electrical and electronic engineering, and for electronic and computer engineering departments, physics departments, and as a reference for industry practitioners of nonlinear optics. It will appeal to a wide audience of optics, physics and electrical and electronic engineering students, as well as practitioners in related fields, such as materials science and chemistry.
Advances in Imaging & Electron Physics merges two long-running serials-Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
Advances in Imaging and Electron Physics, Volume 211, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains.
Advances in Imaging and Electron Physics, Volume 210, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains. Sections in this new release cover Electron energy loss spectroscopy at high energy losses, Examination of 2D Hexagonal Band Structure from a Nanoscale Perspective for use in Electronic Transport Devices, and more.
This book begins with the history and fundamentals of optical fiber communications. Then, briefly introduces existing optical multiplexing techniques and finally focuses on spatial domain multiplexing (SDM), aka space division multiplexing, and orbital angular momentum of photon based multiplexing. These are two emerging multiplexing techniques that have added two new degrees of photon freedom to optical fibers. |
You may like...
International Symposium on Ring Theory
Gary F. Birkenmeier, Jae K. Park, …
Hardcover
R2,461
Discovery Miles 24 610
Introduction to Large Truncated Toeplitz…
Albrecht Boettcher, Bernd Silbermann
Hardcover
R2,797
Discovery Miles 27 970
Toeplitz Matrices and Singular Integral…
Albrecht Bottcher, Israel Gohberg, …
Hardcover
R2,460
Discovery Miles 24 600
Oscillation Theory for Difference and…
R.P. Agarwal, Said R. Grace, …
Hardcover
R2,841
Discovery Miles 28 410
Developments in Functional Equations and…
Janusz Brzdek, Krzysztof Cieplinski, …
Hardcover
R3,471
Discovery Miles 34 710
Carleman Estimates and Applications to…
Mourad Bellassoued, Masahiro Yamamoto
Hardcover
R2,920
Discovery Miles 29 200
|