![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Geophysics
Written by three celebrated astronomers renowned for their excellence in both research and teaching, the central theme is approached in three complementary ways: the smooth evolution of the universe from the Big Bang to the present structures of matter; as a meandering road paved by our observations of stars, galaxies, and clusters; and how these approaches have been gradually developed and intertwined in the historical process leading to modern-day cosmology.
For the fourth consecutive year, the Association of Geographic Infor- tion Laboratories for Europe (AGILE) promoted the edition of a book with the collection of the scientific papers that were submitted as full-papers to the AGILE annual international conference. Those papers went through a th competitive review process. The 13 AGILE conference call for fu- papers of original and unpublished fundamental scientific research resulted in 54 submissions, of which 21 were accepted for publication in this - lume (acceptance rate of 39%). Published in the Springer Lecture Notes in Geoinformation and Car- th graphy, this book is associated to the 13 AGILE Conference on G- graphic Information Science, held in 2010 in Guimaraes, Portugal, under the title "Geospatial Thinking." The efficient use of geospatial information and related technologies assumes the knowledge of concepts that are fundamental components of Geospatial Thinking, which is built on reasoning processes, spatial conc- tualizations, and representation methods. Geospatial Thinking is associated with a set of cognitive skills consisting of several forms of knowledge and cognitive operators used to transform, combine or, in any other way, act on that same knowledge. The scientific papers published in this volume cover an important set of topics within Geoinformation Science, including: Representation and Visualisation of Geographic Phenomena; Spatiotemporal Data Analysis; Geo-Collaboration, Participation, and Decision Support; Semantics of Geoinformation and Knowledge Discovery; Spatiotemporal Modelling and Reasoning; and Web Services, Geospatial Systems and Real-time Appli- tions."
The NATO Advanced Study Institute "Paleorift Systems with Emphasis on the Permian Oslo Rift" was held at Sundvollen near Oslo, Norway, 26. July - 5. August, 1977. The meeting included 6 field trips to various parts of the Oslo Region. 70 official participants and 16 observers from 14 countries attended the meeting. The majority of the invited lectures and short research papers and progress reports presented at the meeting are published in two volumes of which this is volume No. I. Lists of content for both volumes are presently included. The guide to the field trips is being published in the Norwegian Geological Survey Series (1978). Oslo, 10. November 1977. Else-Ragnhild Neumann Ivar B. Ramberg Organizing Committee members: O. Eldholm Geological Institute, University G. Gr nlie of Oslo J. Naterstad I.B. Ramberg (chairman) Mineralogical-Geological Museum, J.A. Dons B.T. Larsen (secretary) University of Oslo E.-R. Neumann (secretary) K.S. Heier (chairman) Norwegian Geological Survey S. Huseby B. Sundvoll Seismological Observatory, University M.A. Sellevoll of Bergen Geophysics Institute, University of K. Storetvedt Bergen Geological Institute, University of P.M. Ihlen Trondheim Chr. Oftedahl F.M. Vokes NORSAR, 2007 Kjeller E.S. Husebye This volume is Scientific Report No. 39 of the Geodynamics project. The Geodynamics project is an international programme of research on the dynamics and dynamic history of the Earth with emphasis on deep-seated foundations of geological phenomena.
This book explores the basic principles and methods of paleomagnetology and gives a systematic description of paleomagnetic phenomena such as geomagnetic reversals, paleosecular variations, long-term intensity changes and apparent polar wandering paths. Special emphasis is laid on results obtained from research work done in the Soviet Union. Together with data from other parts of the world they allow the critical discussion of aspects of magnetostratigraphy, plate tectonics and accretion tectonics. In diesem Buch werden grundlegende Fragen der Palaomagnetologie und des Palaomagnetismus abgehandelt. Durch die Einbeziehung zahlreicher Daten aus der Sowjetunion werden Probleme der Magnetostratigraphie sowie der Platten- und Akkretionstektonik kritisch beleuchtet.
It has been my intention in this book to give a coordinated treatment of the whole of theoretical geophysics. The book assumes a mathematical back ground through calculus and differential equations. It also assumes a reason able background in physics and in elementary vector analysis. The level of the book is commensurate with that of a senior undergraduate or first year graduate course. Its aim is to provide the reader with a survey of the whole of theoretical geophysics. The emphasis has been on the basic and the elementary. The expert in any one of the several disciplines covered here will find much lacking from his particular area of investigation; no apology is made for that. In order to treat all aspects in a coordinated manner, the simplest type of mathematical nota tion for the various physical problems has been used, namely, that of scalars, three-dimensional vectors, and the vector operators, gradient, curl, divergence, etc. It is appreciated that this elementary notation often may not be the most conducive to the solution of some of the more complex geophysical problems. The derivations are, in almost every case, carried through in considerable detail. Sometimes the particulars of the algebra and calculus have been omitted and relegated to one of the problems following the section. The emphasis has been on the physics of the derivations and on explaining the various physical principles important in geophysics, such as continuity, mixing, diffusion, conduction, convection, precession, wobble, rays, waves, dispersion, and potential theory."
This book contains selected papers presented at the NATO Advanced Study Institute on "Strong Ground Motion Seismology," held in Ankara, Turkey between June 10 and 21, 1985. The strong ground motion resulting from a major earthquake determines the level of the seismic hazard to enable earthquake engineers to assess the structural performance and the consecutive risks to the property and life, as well as providing detailed information to seismologists about its source mechanism. From the earthquake engineering point the main problem is the specification of a design level ground motion for a given source-site-structure-economic life and risk combination through deterministic and probabilistic approaches. In seismology the strong motion data provide the high frequency information to determine the rupture process and the complexity of the source mechanism. The effects of the propagation path on the strong ground motion is a research area receiving sub stantial attenuation both from earthquake engineers and seismologists. The Institute provided a venue for the treatment of the subject matter by a series of lectures on earthquake source models and near field theories; effects of propagation paths and site conditions, numerical and empirical methods for prediction; data acquisition and analysis; hazard assessment and engineering application."
There comes a time in the affairs of every organization when we have to sit down and take stock of where we are and where we want to go. When the International Heat Flow Committee (as it was first called), IHFC, was formed in 1963 at the San Francisco International Union of Geodesy and Geophysics with Francis Birch as its first Chairman, the principal purpose was to stimulate work in the basic aspects of geothermics, particularly the measurement of terrestrial heat-flow density (HFD) in what were then the 'geothermally underdeveloped' areas of the world. In this, the IHFC was remarkably successful. By the beginning of the second decade of our existence, interest in the economic aspects of geothermics was increasing at a rapid pace and the IHFC served as a conduit for all aspects of geothermics and, moreover, became the group responsi ble for collecting data on all types of HFD measurements. In all the tasks that are undertaken, the IHFC relies on the enthusiasm of its members and colleagues who devote much of their time to the important but unglamorous and personally unrewarding tasks that were asked of them, and we arc fortunate that our parent institutions are usually quite tolerant of the time spent by their employees on IHFC work."
The author presents examples of coal deposits two different continents: from the European Carboniferous and the Permian Gondwana sequence of Australia. The organic and petrographic composition of the coal content of palaeo-environmentally well defined groups of sediments allow the discrimination of two coal facies indices as suitable indicators for distinct settings. Combining the analytical methods of coal petrography, sedimentology and sequence stratigraphy an integrated view of coal formation is attained.
The book presents new clustering schemes, dynamical systems and pattern recognition algorithms in geophysical, geodynamical and natural hazard applications. The original mathematical technique is based on both classical and fuzzy sets models. Geophysical and natural hazard applications are mostly original. However, the artificial intelligence technique described in the book can be applied far beyond the limits of Earth science applications. The book is intended for research scientists, tutors, graduate students, scientists in geophysics and engineers
The NATO ASI held in the Geophysical Institute, University of Alaska Fairbanks, June 17-28, 1991 was, we believe, the first attempt to bring together geoscientists from all the disciplines related to the solar system where fluid flow is a fundamental phenomenon. The various aspects of flow discussed at the meeting ranged from the flow of ice in glaciers, through motion of the solar wind, to the effects of flow in the Earth's mantle as seen in surface phenomena. A major connecting theme is the role played by convection. For a previous attempt to review the various ways in which convection plays an important role in natural phenomena one must go back to an early comprehensive study by 1. Wasiutynski in "Astro physica Norvegica" vo1. 4, 1946. This work, little known now perhaps, was a pioneering study. In understanding the evolution of bodies of the solar system, from accretion to present-day processes, ranging from interplanetary plasma to fluid cores, the understanding of flow hydrodynamics is essentia1. From the large scale in planetary atmospheres to geological processes, such as those seen in magma chambers on the Earth, one is dealing with thermal or chemical convection. Count Rumford, the founder of the Royal Institution, studied thermal convection experimentally and realized its practical importance in domestic contexts."
estimate tsunami potential by computing seismic moment. This system holds promise for a new generation of local tsunami warning systems. Shuto (Japan) described his conversion of !ida's definition of tsunami magnitude to local tsunami efforts. For example, i l = 2 would equal 4 m local wave height, which would destroy wooden houses and damage most fishing boats. SimOes (Portugal) reported on a seamount-based seismic system that was located in the tsunami source area for Portugal. In summary, the risk of tsunami hazard appears to be more widespread than the Pacific Ocean Basin. It appears that underwater slumps are an important component in tsunami generation. Finally, new technologies are emerging that would be used in a new generation of tsunami warning systems. These are exciting times for tsunami researchers. OBSERVATIONS TSUNAMI DISPERSION OBSERVED IN THE DEEP OCEAN F. I. GONZALEZl and Ye. A. KULIKOV2 Ipacific Marine Environmental Laboratory, NOAA 7600 Sand Point Way, N. E. , Seattle, W A 98115 USA 2State Oceanographic Institute Kropotkinskey per. 6 Moscow 119034, Russia CIS The amplitude and frequency modulation observed in bottom pressure records of the 6 March 1988 Alaskan Bight tsunami are shown to be due to dispersion as predicted by linear wave theory. The simple wave model developed for comparison with the data is also consistent with an important qualitative feature of the sea floor displacement pattern which is predicted by a seismic fault plane deformation model, i. e. the existence of a western-subsidence/eastern-uplift dipole.
Planetary Aeronomy is a modern and concise introduction to the underlying physical and chemical processes that govern the formation and evolution of the upper atmospheres of planets. The general approach employed permits consideration of the growing number of extrasolar planets, the detailed observation of which will become possible over the next decades. The book explains the physics behind many atmospheric processes, which are relevant for the evolution of planetary atmospheres and their water inventories, and also contains useful scaling laws and analytical expressions that can be applied to any planet. Readers thus gain insight into the evolution of terrestrial planets and their long-time habitability, atmospheric stability, etc. This volume can be used both as graduate textbook for students wishing to specialize in the field as well as succinct compendium for researchers in the field.
Although considera bIe efforts are now being made to find new sources of energy, alI the experts are agreed that hydrocarbons will have to provide the greater part of our energy needs for a generation ahead. Exploration for and production of hydrocarbons therefore pose a serious problem for our future, as much for the quantitative satisfaction of our requirements as for our search for self-sufficiency in energy. As a direct result of improvements in technology throughout the world, geophysics has progressively enlarged its field of influence in the realms of exploration and production. But amongst the various geophysical methods available, seismic reflection has gradually become accepted as the basic tool of the oiI prospector. Reflection seismology has reached and consolidated this position because it has shown itself to be capable of adapting to the increasing complexity of the requirements of exploration. Initially directed towards geometric mapping of the sub-surface, it became the means of detection of structural traps in geotectonically quiescent regions, and thereafter in increasingly complex surroundings. It has enabled us to clothe the structural framework with a lithology, initially approximate, but becoming more and more precise, assisting the explorer to locate stratigraphic traps. Further developments enable us under favourable circumstances to estimate the quality of the deposits and to detect the presence of fluids and of their interfaces; it then becomes an unrivalled tool for the producer, both in the development of deposits and in the application of enhanced recovery methods.
PGE V-Voisey's Bay (Canada) D -Duluth Complex (USA) K-Kambalda (Australia) M-Merensky Reef (Bushveld) N -Noril'sk region (Russia) P-Pechenga(Russia) S-Sudbury (Canada) T-Thompson (Canada) J -Jinchuan (China) L-Lac des lies (Canada) PR-Platreef (Bushveld) Po-Portimo Complex (Finland) R-Raglan (Canada) U-UG-2 chromitite (Bushveld) Z-Great Dyke of Zimbabwe e-Mt Keith (Australia) . a. -Perseverance (Australia) +-Stillwater (USA) 0 0 0 'c9 -~ Ni+Co Cu Relative value of Ni+Co Fig. 1. 1. Relative va1ue of the contributions of Ni+Co, Cu and PGE to the mag- matic su1fide deposits listed in Table 1. 1 sulfide deposits are closely related to bodies of mafic or ultramafic rock, and the most convenient way in which to consider them is in terms of the type of magma responsible for the rocks with which they are associated. Typically the type of magma involved bears a close relationship to the tec- tonic setting within which it was emplaced. The locations of important deposits, both Ni-Cu dominant and PGE dominant, are shown in Fig. 1. 2. Considering first Ni-Cu deposits, these are further divided into six classes (Table 1. 2) on the basis of their associated magma type. Class NC- 1 (Chap. 3) comprises those related to komatiitic magmatism. Currently known deposits fall into two sub-classes, those related to Archean komatiites ( e. g. the deposits of Western Australia, Zimbabwe and the Abitibi belt of Canada) and those related to Proterozoic komatiites (e. g. those ofthe Raglau and Thompson belts which arebothin Canada)l.
Uncertainty for Everyone The one thing that is certain about the world is that the world is uncertain. I have here, the question that apart of the matter, living matter, has to resolve in each and every one of its moments of existance. The environment of a living being is apart of the living being where it turns out, the rest of the living beings live. This is the drama of life on earth. Every living individual debates with his environment, exchanging matter, energy and information in the hope of staying alive, the same as all living beings who share that same environment. The adven ture of a living being (of all living beings ) is to maintain reasonable independ ence in face ofthe fluctuations ofuncertainty within the environment. The range of restrictions and mutual relationships is colossal. How is the tran seendental pretension of staying alive regulated? There is an equation imposed by the laws ofthermodynamics and the mathematical theory ofinformation about the interaction ofa living being with his environment which we could state like this: The complexity 01 a living individual plus his capacity for anticipation in re spect to his environment is identical to the uncertainty of the environmentplus the capacity of that living being to change the environment."
The archaeological geology of the Quaternary or the geological epoch during which humankind evolved is a scientific endeavor with much to offer in the fields of archaeology and palaeoanthropology. Earth science techniques offer diverse ways of characterizing the elements of past landscapes and archaeological facies. This book is a survey of techniques used in archaeological geology for the study of soils, sediments, rocks and minerals. The techniques presented represent those most commonly used today. They are discussed in detail and examples are provided, in many cases, to demonstrate their usefulness to archaeologists.
It was in September 1906 that the predecessor of the IAG, the 'Internationale Erdmessung', th organized the 15 General Assembly at the Hungarian Academy of Sciences in Budapest. It was 95 years later, in September 2001, that the IAG returned to this beautiful city to hold its Scientific Assembly, IAG 2001, in the historical premises of the Academy. The meeting took place from September 2-7, 2001 and continued the tradition of Scientific Assemblies, started in Tokyo (1982) and continued in Edinburgh (1989), Beijing (1993) and Rio de Janeiro (1997). Held every four years at the midpoint between General Assemblies of the IAG, they focus on giving an integrated view of geodesy to a broad spectrum of researchers and practitioners in geodesy and geophysics. The convenient location of the main building of the Hungarian Academy in downtown Budapest and the superb efforts of the Local Organizing Committee contributed in a major way to the excellent atmosphere of the meeting. As at previous meetings, the scientific part of the program was organized as a series of symposia which, as a whole, gave a broad overview of actual geodetic research activities. To emphasize an integrated view of geodesy, the symposia did not follow the pattern of the IAG Sections, but focussed on current research topics to which several IAG Sections could contribute. Each symposium had 5 sessions with presented papers and poster sessions on two consecutive days.
Acoustical imaging has become an indispensable tool in a variety of fields. Since its introduction, the applications have grown and cover a variety of techniques, producing significant results in fields as disparate as medicine and seismology. Cutting-edge trends continue to be discussed worldwide. This book contains the proceedings of the 27th International Symposium on Acoustical Imaging (AI27), which took place in Saarbrucken, Germany, from March 24th to March 27th 2003. The Symposium belongs to a conference series in existence since 1968. AI27 comprised sessions on:
During two well-attended workshops the applications of quantitative acoustical imaging in biology and medical applications, and in near-field imaging of materials, were discussed. Based on its cross-disciplinary aspects, the authors of the papers of AI27 present experiments, theory and construction of new instruments. Audience: This volume will be of interest to engineers and researchers of all levels in the field, in industry or academia, and for those newcomers who want to get acquainted with the state-of-the-art in acoustical imaging. "
Planetary nebulae are the classic subject of astrophysics. The physical pro cesses occurring in this highly ionized gaseous medium, the formation of emis sion lines in clearly specified conditions, the continuous emission extending from the far ultraviolet up to infrared and radio frequencies, the generation of exotic forms of radiation predicted by atomic physics, along with methods for deciphering the observed spectra and detecting physical and kinematic parameters of the radiating medium, etc. - all these problems form the solid foundations of the physical theory of gaseous nebulae. They are an essential part of the arsenal of powerful tools and concepts without which one cannot imagine understanding and interpreting the enormous diversity of processes taking place in the Universe - in gaseous envelopes surrounding the stars of various classes, from cool dwarfs and flare stars up to hot supergiants, as well as in stellar chromospheres and coronae, in atmospheres of unstable and anomalous stars, in circumstellar clouds and gaseous shells born in nova and supernova explosions, in diffuse nebulae and the interstellar medium, in interacting binary systems, in galaxies with emission lines, in quasars, etc. The last thirty years have seen a turning-point in our knowledge concern ing the very nature of planetary nebulae (PNs). The radio emission of PNs was discovered after it was predicted theoretically. On the other hand, the powerful infrared emission discovered both in the continuum and in emission lines was never expected."
This second edition has been entirely restructured and almost
doubled in size, in order to improve clarity and account for the
great progress achieved in the field over the last 15 years.
Astromineralogy deals with the science of gathering mineralogical information from the astronomical spectroscopy of asteroids, comets and dust in the circumstellar environments in general. It is only recently, however, that this field has received a tremendous boost with the reliable identification of minerals by the Infrared Space Observatory. This book is the first comprehensive and coherent account of this exciting field. Beyond addressing the specialist in the field, the book is intended as a high-level but readable introduction to astromineralogy for both the nonspecialist researcher and the advanced student.
This volume follows a Specialized Symposium on "Mantle denudation in slow spreading ridges and in ophiolites," held at the XII EUG Meeting in Strasbourg, spring 1993. During the meeting it was felt that the contribu tions to the Symposium justified a volume presenting its main scientific achievements. The present title of the volume shows that the center of inter est has slightly shifted with respect to the initial objective: in order to under stand the processes involved in accretion taking place at oceanic ridges, it is crucial to study the interaction between uppermost mantle and lower crust. The approach favored here is that of petrological and structural analysis of oceanic rocks in present-day oceanic ridges combined with similar studies in ophiolites. Rock specimen collected by submersibles or dredge hauls in oceanic ridge environments provide a "ground truth." However, except for areas such as the MARK (Mid-Atlantic Ridge ne ar Kane fracture zone) where, thanks to multiple submersible dives, the local geology is known with aprecision even better than in many onshore ophiolites, mutual rela tionships between uppermost mantle and lower crust are poorly known. In contrast, onshore ophiolites provide a necessary large-scale picture built up over many years of structural and petrological mapping."
This monograph was begun with two objectives in mind. The first was to provide a review of research involving the application of neodymium isotopic measurements to pro blems in earth science. In the process of organizing to do this, I realized that the research in this field had produced a need for an updated review of the underlying paradigms. This need had arisen because of the special properties of the samarium-neodymium isotopic system, and because the research had transgressed the traditional boundaries be tween the subfields of earth science. Without such a review, the significance of the results seemed likely to remain un necessarily obscure to interested scientists from related disciplines. Consequently, the second objective became the provision of a theoretical framework for the application of neodymium isotopic studies. Much of what this contains is not new, but it is drawn together here for the first time. At the time the writing was initiated, the literature of the field was still relatively limited. Over the past 5 years it has grown enormously. Considering the rate at which the writing progressed, it became clear that this could not be a fully up-to-date review and still reach completion. The selection of material for the review sections is biased toward earlier studies. Part I presents most of the background information."
The material in this book is based predominantly on my recent work. It is the first monograph on the subject, though some support material may overlap other monographs. The investigation of wave packets and their bi furcations is very interesting, and useful theoretically and in practice, not only in geophysical fluid dynamics, which is the field to which the theory is being applied here, but also in other fields in mathematics and the natural sciences. I hope that the applied mathematician will find reading this book worthwhile, especially the material on the behavior of highly nonlinear dy namic systems. However, it is my belief that applying the concepts and methods developed here to other fields will be both interesting and con structive, since there are numerous phenomena in other areas of physics that share the characteristics of those in geophysical fluid dynamics. The theory developed here provides an effective tool to investigate the structure and the structural changes of dynamic systems in physics. Applications of the theory in geophysical fluid dynamics are an example of its usefulness and effectiveness. Some of the results presented here give us more insight into the nature of geophysical fluids. Moreover, the material is presented systematically and developmentally. Necessary basic knowledge is provided to make the book more readable for graduate students and researchers in such fields as applied mathematics, geophysical fluid dynamics, atmospheric sciences, and physical oceanogra phy."
This is the first book in English reviewing and updating the geology of the whole Apennines, one of the recent most uplifted mountains in the world. The Apennines are the place from which Steno (1669) first stated the principles of geology. The Apennines also represent amongst others, the finding/testing sites of processes and products like volcanic eruptions, earthquakes, olistostromes and melanges (argille scagliose), salinity crisis, geothermal fluids, thrust-top basins, and turbidites (first represented in a famous Leonardo's painting). As such, the Apennines are a testing and learning ground readily accessible and rich of any type of field data. A growing literature is available most of which is not published in widely available journals. The objective of the book is to provide a synthesis of current data and ideas on the Apennines, for the most part simply written and suitable for an international audience. However, sufficient details and in-depth analyses of the various complex settings have been presented to make this material useful to professional scholars and to students of senior university courses. |
You may like...
Magnetospheric Imaging - Understanding…
Yaireska M Collado-Vega, Dennis Gallagher, …
Paperback
R3,045
Discovery Miles 30 450
Everyday Applied Geophysics 2…
Nicolas Florsch, Frederic Muhlach, …
Hardcover
Foundations of Modern Global Seismology
Charles J. Ammon, Aaron A. Velasco, …
Paperback
R2,903
Discovery Miles 29 030
|