![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Geophysics
Seismic waves generated by earthquakes have been interpreted to
provide us information about the Earth s structure across a variety
of scales. For short periods of less than 1 second, the envelope of
seismograms changes significantly with increased travel distance
and coda waves are excited by scattering due to randomly
distributed heterogeneities in the Earth. Deterministic structures
such as horizontally uniform velocity layer models in traditional
seismology cannot explain these phenomena. This book focuses on the
Earth heterogeneity and scattering effects on seismic waves. Topics
covered are recent developments in wave theory and observation
including: coda wave analysis for mapping medium heterogeneity and
monitoring temporal variation of physical properties, radiation of
short-period seismic waves from an earthquake fault, weak
localization of seismic waves, attenuation of seismic waves in
randomly porous media, synthesis of seismic wave envelopes in short
periods, and laboratory investigations of ultrasonic wave
propagation in rock samples.
Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy extraction from a rotating black hole immersed in an external magnetic field. Finally, on the basis of the full MHD version of the Grad-Shafranov equation the author discusses the problems of jet collimation and particle acceleration in Active Galactic Nuclei, radio pulsars, and Young Stellar Objects. The comparison of the analytical results with numerical simulations demonstrates their good agreement. Assuming that the reader is familiar with the basic physical and mathematical concepts of General Relativity, the author uses the 3+1 split approach which allows the formulation of all results in terms of physically clear language of three dimensional vectors. The book contains detailed derivations of equations, numerous exercises, and an extensive bibliography. It therefore serves as both an introductory text for graduate students and a valuable reference work for researchers in the field.
Geophysics operations in archaeology have become well known through exposure on television. However, the technique is presented as the action of specialists and something of a mystery, where people walk about with strange contraptions, and results appear from a computer. This is not the case, however. Some scientific knowledge is needed in order to understand how the machines work and what they detect but otherwise it is only necessary to know how to handle the instruments, how to survey a field and how to interpret the computer results. This book provides all the relevant information. It explains geophysics operations in archaeology, describes the science that gives the soil properties to measure and the means by which the instruments make their measurements. Dr John Oswin is in charge of the geophysics operation of the Bath and Camerton Archaeological Society and his work has recently been the subject of a television programme. He has taught many students how to use geophysical equipment.
The Second Edition of The Drift of Sea Ice presents the fundamental laws of sea ice drift which come from the material properties of sea ice and the basic laws of mechanics. The resulting system of equations is analysed for the general properties of sea ice drift, the free drift model and analytical models for ice drift in the presence of internal friction, and the construction of numerical ice drift models is detailed. This second edition of a much lauded work, unique on this topic in the English language, has been revised, updated and expanded with much new information and outlines recent results, in particular in relation to the climate problem, mathematical modelling and ice engineering applications. The current book presents the theory, observations, mathematical modelling techniques, and applications of sea ice drift science. The theory is presented from the beginning on a graduate student level, so that students and researchers coming from other fields such as physical oceanography, meteorology, physics, engineering, environmental sciences or geography can use the book as a source book or self-study material. First the drift ice material is presented ending with the concept of ice state the relevant properties in sea ice dynamics. Ice kinematics observations are widely presented with the mathematical analysis methods, and thereafter come drift ice rheology to close the triangle material kinematics stress. The momentum equation of sea ice is derived in detail and its general properties are carefully analysed. Then follow two chapters on analytical models: free drift and drift in the presence of internal friction: These are very important tools in understanding the dynamical behaviour of sea ice. The last topical chapter is numerical models, which are the modern tool to solve ice dynamics problem in short term and long term problems. The closing chapter summarises sea ice dynamics applications and the need of sea ice dynamic knowledge and gives some final remarks on the future of this branch of science.
It all began with Markus Jochum approaching one of us (HvS) - "when you guys are doing interviews with senior scientists from oceanography and related sciences, why are you not doing Walter Munk?" Indeed, why not? Walter Munk, an icon in oceanography, had just given a wonderful talk in a symposium in honor of his 90th birthday, sweeping a grand circle from his earliest work with Chip Cox on airborne measurements of ocean surface roughness to the latest satellite data - not simply a review, but the struggle of an active scientist opening up new perspectives - as inspiring and stimulating as when one of us (KH) rst met him at the Ocean Waves Conference in Easton in 1961 (Fig. I. 1). Walter immediately agreed to share with us his recollections on the nearly seventy years of his path-breaking contributions in a sheer amazing range of topics, from ocean waves, internal waves, ocean currents, tides, tsunamis, sea level, microseisms and the rotation of the earth to ocean acoustic tomography. With "you guys" Markus was referring to HvS and the various partners HvS had 1 invited to join him in conducting a series of interviews of retired colleagues.
This book on multiscale seismic tomography, written by one of the leaders in the field, is suitable for undergraduate and graduate students, researchers, and professionals in Earth and planetary sciences who need to broaden their horizons about seismotectonics, volcanism, and interior structure and dynamics of the Earth and Moon. It describes the state-of-the-art in seismic tomography, with emphasis on the new findings obtained by applying tomographic methods in local, regional, and global scales for understanding the generating mechanism of large and great earthquakes such as the 2011 Tohoku-oki earthquake (Mw 9.0), crustal and upper mantle structure, origin of active arc volcanoes and intraplate volcanoes including hotspots, heterogeneous structure of subduction zones, fate of subducting slabs, origin of mantle plumes, mantle convection, and deep Earth dynamics. The first lunar tomography and its implications for the mechanism of deep moonquakes and lunar evolution are also introduced.
Failure by the international community to make substantive progress in reducing CO2 emissions, coupled with recent evidence of accelerating climate change, has brought increasing urgency to the search for additional remediation approaches. This book presents a selection of state-of-the-art geoengineering methods for deliberately reducing the effects of anthropogenic climate change, either by actively removing greenhouse gases from the atmosphere or by decreasing the amount of sunlight absorbed at the Earth's surface. These methods contrast with more conventional mitigation approaches which focus on reducing emissions of greenhouse gases, especially carbon dioxide. Geoengineering technologies could become a key tool to be used in conjunction with emissions reduction to limit the magnitude of climate change. Featuring authoritative, peer-reviewed entries from the Encyclopedia of Sustainability Science and Technology, this book presents a wide range of climate change remediation technologies.
A complete solution for problems of vibration control in structures that may be subject to a broadband primary vibration field, this book addresses the following steps: experimental identification of the dynamic model of the structure; optimal placement of sensors and actuators; formulation of control constraints in terms of controller frequency response shape; controller design and simulation; and controller implementation and rapid prototyping. The identification procedure is a gray-box approach tailored to the estimation of modal parameters of large-scale flexible structures. The actuator/sensor placement algorithm maximizes a modal controllability index improving the effectiveness of the control. Considering limitations of sensors and actuators, the controller is chosen as a stable, band-pass MIMO system resulting from the closed-form solution of a robust control problem. Experimental results on an aeronautical stiffened skin panel are presented using rapid-prototyping hardware.
This book makes good background reading for much of modern magnetospheric physics. Its origin was a Festspiel for Professor Jim Dungey, former professor in the Physics Department at Imperial College on the occasion of his 90th birthday, 30 January 2013. Remarkably, although he retired 30 years ago, his pioneering and, often, maverick work in the 50's through to the 70's on solar terrestrial physics is probably more widely appreciated today than when he retired. Dungey was a theoretical plasma physicist. The book covers how his reconnection model of the magnetosphere evolved to become the standard model of solar-terrestrial coupling. Dungey's open magnetosphere model now underpins a holistic picture explaining not only the magnetic and plasma structure of the magnetosphere, but also its dynamics which can be monitored in real time. The book also shows how modern day simulation of solar terrestrial coupling can reproduce the real time evolution of the solar terrestrial system in ways undreamt of in 1961 when Dungey's epoch-making paper was published. Further contributions on current Earth magnetosphere research and space plasma physics included in this book show how Dungey's basic ideas have remained explanative 50 years on. But the Festspiel also introduced some advances that possibly Dungey had not foreseen. One of the contributions presented in this book is on the variety of magnetospheres of the solar system which have been seen directly during the space age, discussing the variations in spatial scale and reconnection time scale and comparing them in respect of Earth, Mercury, the giant planets as well as Ganymede.
Climate for the 21st century is expected to be considerably
different from the present and recent past. Industrialization
growth combined with the increasing CO2 concentration in the
atmosphere and massive deforestation are well above the values over
the past several decades and are expected to further grow. Air
temperature is rising rapidly well as does the weather variability
producing frequent extreme events. Six of the ten warmest years
occurred in the 1990s. Temperatures predicted for the 21st century
ranges well above the present day value.
"Potential Theory in Applied Geophysics" introduces the principles of gravitational, magnetic, electrostatic, direct current electrical and electromagnetic fields, with detailed solutions of Laplace and electromagnetic wave equations by the method of separation of variables. Behaviour of the scalar and vector potential and the nature of the solutions of these boundary value problems are shown along with the use of complex variables and conformal transformation, Green's theorem, Green's functions and its use in integral equation. Finite element and finite difference methods for two-dimensional potential problems are discussed in considerable detail. The analytical continuation of the potential field and inverse theory, used for the interpretation of potential field data, are also demonstrated.
This first volume in the treatise on the Physics of Lakes deals with the formulation of the mathematical and physical background. A large number of lakes on Earth are described, presenting their morphology as well as the causes of their response to the driving environment. Because the physics of lakes cannot be described without the language used in mathematics, these subjects are introduced first by using the simplest approach and with utmost care, assuming only a limited college knowledge of classical Newtonian physics, and continues with increasing complexity and elegance, starting with the fundamental equations of Lake Hydrodynamics in the form of 'primitive equations' and leading to a detailed treatment of angular momentum and vorticity. Following the presentation of these fundamentals turbulence modeling is introduced with Reynolds, Favre and other non-ergodic filters. The derivation of averaged field equations is presented with different closure schemes, including the k- model for a Boussinesq fluid and early anisotropic closure schemes. This is followed by expositions of surface gravity waves without rotation and an analysis of the role played by the distribution of mass within water bodies on the Earth, leading to a study of internal waves. The vertical structure of wind-induced currents in homogeneous and stratified waters and the Ekman theory and some of its extensions close this first volume of Physics of Lakes. The last chapter collects formulas for the phenomenological coefficients of water.
The Earth's average temperature has risen by 1.4 DegreesF over the past century, and computer models project that it will rise much more over the next hundred years, with significant impacts on weather, climate, and human society. Many climate scientists attribute these increases to the build up of greenhouse gases produced by the burning of fossil fuels and to the anthropogenic production of short-lived climate pollutants. Climate Change Modeling Methodologies: Selected Entries from the Encyclopaedia of Sustainability Science and Technology provides readers with an introduction to the tools and analysis techniques used by climate change scientists to interpret the role of these forcing agents on climate. Readers will also gain a deeper understanding of the strengths and weaknesses of these models and how to test and assess them. The contributions include a glossary of key terms and a concise definition of the subject for each topic, as well as recommendations for sources of more detailed information.
Here, the authors present modern mathematical methods to solve problems of differential-operator inclusions and evolution variation inequalities which may occur in fields such as geophysics, aerohydrodynamics, or fluid dynamics. For the first time, they describe the detailed generalization of various approaches to the analysis of fundamentally nonlinear models and provide a toolbox of mathematical equations. These new mathematical methods can be applied to a broad spectrum of problems. Examples of these are phase changes, diffusion of electromagnetic, acoustic, vibro-, hydro- and seismoacoustic waves, or quantum mechanical effects. This is the second of two volumes dealing with the subject.
This book presents the novel formulation and development of a Stochastic Flood Forecasting System, using the Middle River Vistula basin in Poland as a case study. The system has a modular structure, including models describing the rainfall-runoff and snow-melt processes for tributary catchments and the transformation of a flood wave within the reach. The sensitivity and uncertainty analysis of the elements of the study system are performed at both the calibration and verification stages. The spatial and temporal variability of catchment land use and river flow regime based on analytical studies and measurements is presented. A lumped parameter approximation to the distributed modelling of river flow is developed for the purpose of flow forecasting. Control System based emulators (Hammerstein-Wiener models) are applied to on-line data assimilation. Medium-range probabilistic weather forecasts (ECMWF) and on-line observations of temperature, precipitation and water levels are used to prolong the forecast lead time. The potential end-users will also benefit from a description of social vulnerability to natural hazards in the study area.
This book presents a systematic attempt to generalize several fundamental physical laws related to subsurface fluid flow that are important for a number of contemporary applications in the areas of hydrogeology, reservoir engineering and rock mechanics. It also covers the history of discovering these physical laws, their respective scope of validity, and their generalizations or extensions. The physical laws discussed include Darcy's law, Darcy-Buckingham law and Hooke's law. Darcy's law is the fundamental law for subsurface fluid flow. For low-permeability media, it is not always adequate because of the strong fluid-solid interaction. Though the Darcy-Buckingham law is often used for modeling subsurface multiphase flow, it is only valid under the local equilibrium condition. This condition does not hold in many cases, especially when fingering flow occurs. It is well known that subsurface fluid flow is coupled with mechanical deformation of subsurface media; in some applications, this coupling can play a dominant role. The continuum-scale elastic deformation of natural rock, however, does not always follow the traditional form of Hooke's law. The book also presents applications of the proposed generalizations of the physical laws to several important engineering projects.
This book presents the concepts and tools of ice mechanics, together with examples of their application in the fields of glaciology, climate research and civil engineering in cold regions. It starts with an account of the most important physical properties of sea and polar ice treated as an anisotropic polycrystalline material, and reviews relevant field observations and experimental measurements. The book focuses on theoretical descriptions of the material behaviour of ice in different stress, deformation and deformation-rate regimes on spatial scales ranging from single ice crystals, those typical in civil engineering applications, up to scales of thousands of kilometres, characteristic of large, grounded polar ice caps in Antarctica and Greenland. In addition, it offers a range of numerical formulations based on either discrete (finite-element, finite-difference and smoothed particle hydrodynamics) methods or asymptotic expansion methods, which have been used by geophysicists, theoretical glaciologists and civil engineers to simulate the behaviour of ice in a number of problems of importance to glaciology and civil engineering, and discusses the results of these simulations. The book is intended for scientists, engineers and graduate students interested in mathematical and numerical modelling of a wide variety of geophysical and civil engineering problems involving natural ice.
This book focuses on essential theories, methods and techniques in the field of environmental and engineering geophysics that can contribute to resource detection and environmental protection. Geophysics has been playing an important role in exploring the earth, locating vital resources and promoting the development of society. This book covers a range of topics including the exploration of modern resources, such as ore deposits, coal mines, shale gas and geothermal power, and the monitoring of geological disasters, including the rock-soil body, ground deformation, mines, specific rock-soil engineering disasters, desertification of land and environmental abnormalities. This book not only offers a valuable resource for geophysical researchers; it also demonstrates how geophysics theories and methods can be practically implemented to protect our environment and promote the development of human society.
This book offers a collection of papers presented in the International Conference on Geomagnetism, Paleomagnetism and Rock Magnetism held in Kazan (Russia) in October 2017. Papers in this book are dedicated to the study of the geomagnetic field through most of the Earth's history as well as planetary and meteorite magnetism, and magnetic signatures of terrestrial impact craters. Recent studies, summaries, and reviews include: 1 - theory of the geomagnetic field, its generation and variations; 2 - experimental data on the geomagnetic field changes; 3 - studies of rock magnetism; 4 - paleotectonic reconstructions and paleoceanography; 5 - magnetostratigraphy; 6 - extraterrestrial magnetism. Summary reports and reviews will be presented by the world's leading experts in the field of geomagnetic studies. Such workshops held by Academic Council have become traditional. They are always attended by leading professionals from Russia, CIS and non-CIS countries. In addition to discussion sessions focused on recent studies and findings, lectures on some basic concepts of geomagnetism will be delivered by leading Russian and foreign scientists
The book provides an elaborate treatment of groundwater prospecting and management covering remote sensing, geological-geophysical cum hydrogeological studies, exploration (geological and geophysical), development (well logging techniques, pump test, its analysis and applications in well design), contamination (pollution of groundwater) and regulatory legislations regarding groundwater utilization under one cover. The book presents an elucidation of fundamental and theoretical background of each technique supported by necessary illustrative examples and exclusive case studies. It is a text-cum-reference book not only for students, research scholars and practicing earth scientists but also for practicing civil and agricultural engineers working in the application of groundwater resources, engaged in its exploration, development, contamination, legislation and management. The general readers can also refer the book for understanding the groundwater domain for adequate knowledge, as groundwater resources are essential life support commodity which is replenishable but not inexhaustible. |
You may like...
The Geological Interpretation of Well…
M.H. Rider, Martin Kennedy
Paperback
R1,573
Discovery Miles 15 730
Machine Learning for Planetary Science
Joern Helbert, Mario D'Amore, …
Paperback
R3,380
Discovery Miles 33 800
Geophysical Exploration of the Solar…
Cedric Schmelzbach, Simon Christian Stahler
Hardcover
R4,816
Discovery Miles 48 160
Everyday Applied Geophysics 2…
Nicolas Florsch, Frederic Muhlach, …
Hardcover
Earth's Magnetosphere - Formed by the…
Wayne Keith, Walter Heikkila
Paperback
R3,346
Discovery Miles 33 460
|