![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Geophysics
To understand the global warming mechanism, global mapping of
primary production was carried out under the GCMAPS program. The
program was concerned with marine and terrestrial environmental
changes, which affect carbon cycle on the regional and global
scales. On the regional scale, warm phase of ENSO (El Nino /
Southern Oscillation) has been shown to affect economic activities
in many countries. The keyword for understanding mechanism of
global warming is primary productivity . The earth observation
satellites (EOS) like the ADEOS of Japan, and the SeaWiFS, Sea Star
and Terra of the U.S.A. provided much required data for modeling
and verification of primary production estimates on both land and
ocean.
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 138.Subduction zones helped nucleate and grow the continents, they fertilize and lubricate the earth's interior, they are the site of most subaerial volcanism and many major earthquakes, and they yield a large fraction of the earth's precious metals. They are obvious targets for study--almost anything you learn is likely to impact important problems--yet arriving at a general understanding is notoriously difficult: Each subduction zone is distinct, differing in some important aspect from other subduction zones; fundamental aspects of their mechanics and igneous processes differ from those in other, relatively well-understood parts of the earth; and there are few direct samples of some of their most important metamorphic and metasomatic processes. As a result, even first-order features of subduction zones have generated conflict and apparent paradox. A central question about convergent margins, for instance--how vigorous magmatism can occur where plates sink and the mantle cools--has a host of mutually inconsistent answers: Early suggestions that magmatism resulted from melting subducted crust have been emphatically disproved and recently just as emphatically revived; the idea that melting is fluxed by fluid released from subducted crust is widely held but cannot explain the temperatures and volatile contents of many arc magmas; generations of kinematic and dynamic models have told us the mantle sinks at convergent margins, yet strong evidence suggests that melting there is often driven by upwelling. In contrast, our understanding ofwhy volcanoes appear at ocean ridges and "hotspots"--although still presenting their own chestnuts--are fundamentally solved problems.
The critically acclaimed serialized review journal for nearly fifty years, Advances in Geophysics is a highly respected publication in the field of geophysics. Since 1952, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 45 volumes, the Serial contains much material still relevant today-truly an essential publication for researchers in all fields of geophysics.
This book includes the proceedings of the conference "Problems of the Geocosmos" held by the Earth Physics Department, St. Petersburg State University, Russia, every two years since 1996. Covering a broad range of topics in solid Earth physics and solar-terrestrial physics, as well as more applied subjects such as engineering geology and ecology, the book reviews the latest research in planetary geophysics, focusing on the interaction between the Earth's shells and the near-Earth space in a unified system. This book is divided into four sections: * Exploration and Environmental Geophysics (EG), which covers two broad areas of environmental and engineering geophysics - near-surface research and deep geoelectric studies; * Paleomagnetism and Rock Magnetism (P), which includes research on magnetostratigraphy, paleomagnetism applied to tectonics, environmental magnetism, and marine magnetic anomalies; * Seismology (S), which covers the theory of seismic wave propagation, Earth's structure from seismic data, global and regional seismicity and sources of earthquakes, and novel seismic instruments and data processing methods; and * Physics of Solar-Terrestrial Connections (STP), which includes magnetospheric phenomena, space weather, and the interrelationship between solar activity and climate.
Here's the ideal tool if you're looking for a flexible,
straightforward analysis system for your everyday design and
operations decisions. This new third edition includes sections on
stations, geographical information systems, "absolute" versus
"relative" risks, and the latest regulatory developments. From
design to day-to-day operations and maintenance, this unique volume
covers every facet of pipeline risk management, arguably the most
important, definitely the most hotly debated, aspect of pipelining
today.
This book discusses in detail the special theory of relativity without including all the instruments of theoretical physics, enabling readers who are not budding theoretical physicists to develop competence in the field. An arbitrary but fixed inertial system is chosen, where the known velocity of light is measured. With respect to this system a moving clock loses time and a moving length contracts. The book then presents a definition of simultaneity for the other inertial frames without using the velocity of light. To do so it employs the known reciprocity principle, which in this context serves to provide a definition of simultaneity in the other inertial frames. As a consequence, the Lorentz transformation is deduced and the universal constancy of light is established. With the help of a lattice model of the special theory of relativity the book provides a deeper understanding of the relativistic effects. Further, it discusses the key STR experiments and formulates and solves 54 problems in detail.
This book examines the origins and dynamical characteristics of atmospheric inertia-gravity waves in the Antarctic mesosphere. Gravity waves are relatively small-scale atmospheric waves with a restoring force of buoyancy that can transport momentum upward from the troposphere to the middle atmosphere. In previous studies, the dynamical characteristics of mesospheric gravity waves have not been fully examined using numerical simulations, since performing a numerical simulation with a high resolution and a high model-top requires considerable computational power. However, recent advances in computational capabilities have allowed us to perform numerical simulations using atmospheric general circulation models, which cover the troposphere to the mesosphere with a sufficiently fine horizontal resolution to resolve small-scale gravity waves. The book first describes the simulation of mesospheric gravity waves using a high-resolution non-hydrostatic atmospheric model with a high model top. The accuracy of the numerical results was confirmed by the first Mesosphere-Stratosphere-Troposphere/Incoherent Scattering (MST/IS) radar observation in the Antarctic. It also depicts the origins and propagation processes of mesospheric gravity waves on the basis of the results of the high-resolution numerical model. The behaviors of mesospheric gravity waves can be clearly explained using both fundamental and cutting-edge theories of fluid dynamics
This book describes in detail the various theories on the shape of the Earth from classical antiquity to the present day and examines how measurements of its form and dimensions have evolved throughout this period. The origins of the notion of the sphericity of the Earth are explained, dating back to Eratosthenes and beyond, and detailed attention is paid to the struggle to establish key discoveries as part of the cultural heritage of humanity. In this context, the roles played by the Catholic Church and the philosophers of the Middle Ages are scrutinized. Later contributions by such luminaries as Richer, Newton, Clairaut, Maupertuis, and Delambre are thoroughly reviewed, with exploration of the importance of mathematics in their geodetic enterprises. The culmination of progress in scientific research is the recognition that the reference figure is not a sphere but rather a geoid and that the earth's shape is oblate. Today, satellite geodesy permits the solution of geodetic problems by means of precise measurements. Narrating this fascinating story from the very beginning not only casts light on our emerging understanding of the figure of the Earth but also offers profound insights into the broader evolution of human thought.
Machine Learning Techniques for Space Weather provides a thorough and accessible presentation of machine learning techniques that can be employed by space weather professionals. Additionally, it presents an overview of real-world applications in space science to the machine learning community, offering a bridge between the fields. As this volume demonstrates, real advances in space weather can be gained using nontraditional approaches that take into account nonlinear and complex dynamics, including information theory, nonlinear auto-regression models, neural networks and clustering algorithms. Offering practical techniques for translating the huge amount of information hidden in data into useful knowledge that allows for better prediction, this book is a unique and important resource for space physicists, space weather professionals and computer scientists in related fields.
Complexity of Seismic Time Series: Measurement and Application applies the tools of nonlinear dynamics to seismic analysis, allowing for the revelation of new details in micro-seismicity, new perspectives in seismic noise, and new tools for prediction of seismic events. The book summarizes both advances and applications in the field, thus meeting the needs of both fundamental and practical seismology. Merging the needs of the classical field and the very modern terms of complexity science, this book covers theory and its application to advanced nonlinear time series tools to investigate Earth's vibrations, making it a valuable tool for seismologists, hazard managers and engineers.
Indian Shield: Precambrian Evolution and Phanerozoic Reconstitution highlights unique evolutionary trends covering a period of over 3,500 million years, from the oldest crust to the most recent geological activity of the Indian Subcontinent. The book discusses regional terrain geology in terms of the evolutionary history of the crust, describing how the Precambrian Shield evolved from a stable continental region to a tectonically unstable zone marked by frequent high-intensity earthquakes in a Plate-interior setting. It is a complete and readable account of the history of growth and evolution of the Indian Subcontinent, including Bangladesh, Bhutan, India, Nepal and Pakistan. The book is intended for graduate students, researchers, and teachers in the geosciences, especially geophysics, geomorphology and geology. The book also serves as an important resource for tectonics and petrology researchers, as well as those involved in exploration of mineral resources.
At the heart of this book is the generalized theoretical approach that is applied to investigate the geoelectrical structure of the Earth's mantle. It also analyzes the results of regional and global induction sounding of the Earth's mantle and compares them with the results obtained by other geophysical methods. The generalized theoretical approach employs the Induction Law as a basis for identifying extended relations between magnetic field components, including their plane divergence, impedances and spatial derivatives. The estimations of impedance values and spatial derivatives are performed using the theory of stochastic processes. The book also considers the external sources of magnetic fields used for sounding the Earths mantle from the modern theory perspective, as well as the problem of coincidence of magneto-variation and magnetotelluric methods. Further, it discusses secular variations in the Earth's resistance caused by non-induction sources, factors that are correlated with the number of earthquakes in the region and shifted in time with global indexes. It is a valuable resource for scientists applying deep induction soundings or interested in the structures of and processes in the Earth's interior.
This book provides information and tools necessary to bridge and integrate the knowledge gaps related to the acquisition and processing of archaeological data, specifically in the field of preventive diagnostics, urban centers, archaeological parks and historical monuments, through activities that involve the application of non-invasive diagnostic detection systems, in the field of applied geophysics. The principal aim of this book is to define a tool for experts that work in the frame of Cultural Heritage and to identify a procedure of intervention transferable and usable in different geographical contexts and areas of investigations: it could help to decide the better technique of investigation to apply in relation to the predictive characteristics of the archaeological site and the objectives of the survey. The book is divided in two parts. The first one explains the theory of ground high resolution penetrating radar (GPR), electrical resistivity tomography (ERT), controlled source electromagnetism system, differential magnetic method and the scenario of integrated methods of different geophysical techniques. Each section covers the basic theory (complete description of the physical parameters involved in the method), field instruments (description of all systems actually offered by commercial companies), field techniques (presentation of the main procedures and setting parameters used to explore the ground surface during data acquisition), techniques of data processing and representation (main processing routines and comparison between different techniques; presentation of different typologies of graphical representation), and the possibility and limitations of methods (explanation of best and worst conditions of implementation of the geophysical technique in relation to the contrasts between archaeological features and the natural background and the features of the instruments and arrays). The second part describes some applications of geophysical prospection to Cultural Heritage in detailed case histories, divided in sections relative to monuments, historical buildings, urban centres, archaeological parks and ancient viability. Moreover, examples of integration of three-dimensional reliefs and geophysical diagnostic of a monuments and studies of large scale reconnaissance implemented into a Geographical Information System are treated. In each case study the authors cover the description of the archaeological or historical contest; an explanation of the problem to solve; a choice of the geophysical methods; the setting of the procedure of data acquisition; techniques of data processing; a representation, interpretation, and discussion of the results.
The monograph introduces the reader to the world of inductive well logging - an established method for surveying the electrical conductivity of rocks surrounding a borehole. The emphasis is on developing a theory of inductive logging and on understanding logging tools basic physics, since this theory and understanding furnish valuable insights for inventing practical induction logging techniques.
This book explores the dynamics of planetary and stellar fluid layers, including atmospheres, oceans, iron cores, and convective and radiative zones in stars, describing the different theoretical, computational and experimental methods used to study these problems in fluid mechanics, including the advantages and limitations of each method for different problems. This scientific domain is by nature interdisciplinary and multi-method, but while much effort has been devoted to solving open questions within the various fields of mechanics, applied mathematics, physics, earth sciences and astrophysics, and while much progress has been made within each domain using theoretical, numerical and experimental approaches, cross-fertilizations have remained marginal. Going beyond the state of the art, the book provides readers with a global introduction and an up-to-date overview of relevant studies, fully addressing the wide range of disciplines and methods involved. The content builds on the CISM course "Fluid mechanics of planets and stars", held in April 2018, which was part of the research project FLUDYCO, supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program.
This book is the result of collaboration within the framework of the Third International Scientific School for Young Scientists held at the Ishlinskii Institute for Problems in Mechanics of Russian Academy of Sciences, 2017, November. The papers included describe studies on the dynamics of natural system - geosphere, hydrosphere, atmosphere-and their interactions, the human contribution to naturally occurring processes, laboratory modeling of earth and environment processes, and testing of new developed physical and mathematical models. The book particularly focuses on modeling in the field of oil and gas production as well as new alternative energy sources.
These proceedings present selected research papers from CSNC2017, held during 23th-25th May in Shanghai, China. The theme of CSNC2017 is Positioning, Connecting All. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2017, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.
An Introduction to Mining Seismology describes comprehensively the
modern methods and techniques used to monitor and study seismicity
and rockbursts in mines. Key case histories from various worldwide
mining districts clearly illustrate and skillfully emphasize the
practical aspects of mining seismology. This text is intended as a
handbook for geophysicists and mining and rock mechanics engineers
working at mines. It will also serve as an essential reference tool
for seismologists working at research institutions on local
seismicity not necessarily induced by mining.
This detailed book systematically investigates subsurface geological fractures using rock mechanics, geology, and geophysics. Based on geological fracture mechanisms and fracture boundary conditions, it presents new finite-difference equations for the simulation of seismic wave responses to geological fractures, and proposes innovative AVO inversion equations for the accurate estimation of the rock properties of the fractured medium. It employs schematics, snapshots, color images and charts to demonstrate the mechanical characteristics of the fractures, the seismic wave-field response to the fractures, the seismic data attributes of the fractures and the rock properties of the fractures obtained via inversion. It provides a new methodology for enhancing geological fracture detection technology and for the accurate delineation of fractured reservoirs that ultimately benefits reservoir and mining engineers, geologists and geophysicists in terms of optimizing reservoir recovery, well performance and mining safety.
This book lays the foundations of gas- and fluid dynamics.The basic equations are developed from first principles, building on the (assumed) knowledge of Classical Mechanics. This leads to the discussion of the mathematical properties of flows, conservation laws, perturbation analysis, waves and shocks. Most of the discussion centers on ideal (frictionless) fluids and gases. Viscous flows are discussed when considering flows around obstacles and shocks. Many of the examples used to illustrate various processes come from astrophysics and geophysical phenomena.
This volume offers an overview of the state-of-the-art theoretical and practical approaches currently used for geophysical data interpretation. It includes new methods and techniques for solving data processing problems, and an analysis of geopotential fields by international researchers. It discusses topics such as: 1. Theoretical issues of interpretation of gravitational, magnetic and electric fields, including general methods of interpreting potential fields and other geophysical data. 2. Modern algorithms and computer technologies for interpretating geophysical fields. 3. The study of Earth deep structure using terrestrial and satellite potential field anomalies. 4. Geological interpretation of gravitational, magnetic and electric fields. This proceedings book is of interest to all geophysical researchers. |
You may like...
Seismic While Drilling - Fundamentals of…
F.B. Poletto, F. Miranda
Paperback
R4,457
Discovery Miles 44 570
Interpreting Subsurface Seismic Data
Rebecca Bell, David Iacopini, …
Paperback
R3,584
Discovery Miles 35 840
|