![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Geophysics
This book describes in detail the various theories on the shape of the Earth from classical antiquity to the present day and examines how measurements of its form and dimensions have evolved throughout this period. The origins of the notion of the sphericity of the Earth are explained, dating back to Eratosthenes and beyond, and detailed attention is paid to the struggle to establish key discoveries as part of the cultural heritage of humanity. In this context, the roles played by the Catholic Church and the philosophers of the Middle Ages are scrutinized. Later contributions by such luminaries as Richer, Newton, Clairaut, Maupertuis, and Delambre are thoroughly reviewed, with exploration of the importance of mathematics in their geodetic enterprises. The culmination of progress in scientific research is the recognition that the reference figure is not a sphere but rather a geoid and that the earth's shape is oblate. Today, satellite geodesy permits the solution of geodetic problems by means of precise measurements. Narrating this fascinating story from the very beginning not only casts light on our emerging understanding of the figure of the Earth but also offers profound insights into the broader evolution of human thought.
Machine Learning Techniques for Space Weather provides a thorough and accessible presentation of machine learning techniques that can be employed by space weather professionals. Additionally, it presents an overview of real-world applications in space science to the machine learning community, offering a bridge between the fields. As this volume demonstrates, real advances in space weather can be gained using nontraditional approaches that take into account nonlinear and complex dynamics, including information theory, nonlinear auto-regression models, neural networks and clustering algorithms. Offering practical techniques for translating the huge amount of information hidden in data into useful knowledge that allows for better prediction, this book is a unique and important resource for space physicists, space weather professionals and computer scientists in related fields.
Complexity of Seismic Time Series: Measurement and Application applies the tools of nonlinear dynamics to seismic analysis, allowing for the revelation of new details in micro-seismicity, new perspectives in seismic noise, and new tools for prediction of seismic events. The book summarizes both advances and applications in the field, thus meeting the needs of both fundamental and practical seismology. Merging the needs of the classical field and the very modern terms of complexity science, this book covers theory and its application to advanced nonlinear time series tools to investigate Earth's vibrations, making it a valuable tool for seismologists, hazard managers and engineers.
Indian Shield: Precambrian Evolution and Phanerozoic Reconstitution highlights unique evolutionary trends covering a period of over 3,500 million years, from the oldest crust to the most recent geological activity of the Indian Subcontinent. The book discusses regional terrain geology in terms of the evolutionary history of the crust, describing how the Precambrian Shield evolved from a stable continental region to a tectonically unstable zone marked by frequent high-intensity earthquakes in a Plate-interior setting. It is a complete and readable account of the history of growth and evolution of the Indian Subcontinent, including Bangladesh, Bhutan, India, Nepal and Pakistan. The book is intended for graduate students, researchers, and teachers in the geosciences, especially geophysics, geomorphology and geology. The book also serves as an important resource for tectonics and petrology researchers, as well as those involved in exploration of mineral resources.
At the heart of this book is the generalized theoretical approach that is applied to investigate the geoelectrical structure of the Earth's mantle. It also analyzes the results of regional and global induction sounding of the Earth's mantle and compares them with the results obtained by other geophysical methods. The generalized theoretical approach employs the Induction Law as a basis for identifying extended relations between magnetic field components, including their plane divergence, impedances and spatial derivatives. The estimations of impedance values and spatial derivatives are performed using the theory of stochastic processes. The book also considers the external sources of magnetic fields used for sounding the Earths mantle from the modern theory perspective, as well as the problem of coincidence of magneto-variation and magnetotelluric methods. Further, it discusses secular variations in the Earth's resistance caused by non-induction sources, factors that are correlated with the number of earthquakes in the region and shifted in time with global indexes. It is a valuable resource for scientists applying deep induction soundings or interested in the structures of and processes in the Earth's interior.
Foundations of Geophysical Electromagnetic Theory and Methods, Second Edition, builds on the strength of the first edition to offer a systematic exposition of geophysical electromagnetic theory and methods. This new edition highlights progress made over the last decade, with a special focus on recent advances in marine and airborne electromagnetic methods. Also included are recent case histories on practical applications in tectonic studies, mineral exploration, environmental studies and off-shore hydrocarbon exploration. The book is ideal for geoscientists working in all areas of geophysics, including exploration geophysics and applied physics, as well as graduate students and researchers working in the field of electromagnetic theory and methods.
This book provides information and tools necessary to bridge and integrate the knowledge gaps related to the acquisition and processing of archaeological data, specifically in the field of preventive diagnostics, urban centers, archaeological parks and historical monuments, through activities that involve the application of non-invasive diagnostic detection systems, in the field of applied geophysics. The principal aim of this book is to define a tool for experts that work in the frame of Cultural Heritage and to identify a procedure of intervention transferable and usable in different geographical contexts and areas of investigations: it could help to decide the better technique of investigation to apply in relation to the predictive characteristics of the archaeological site and the objectives of the survey. The book is divided in two parts. The first one explains the theory of ground high resolution penetrating radar (GPR), electrical resistivity tomography (ERT), controlled source electromagnetism system, differential magnetic method and the scenario of integrated methods of different geophysical techniques. Each section covers the basic theory (complete description of the physical parameters involved in the method), field instruments (description of all systems actually offered by commercial companies), field techniques (presentation of the main procedures and setting parameters used to explore the ground surface during data acquisition), techniques of data processing and representation (main processing routines and comparison between different techniques; presentation of different typologies of graphical representation), and the possibility and limitations of methods (explanation of best and worst conditions of implementation of the geophysical technique in relation to the contrasts between archaeological features and the natural background and the features of the instruments and arrays). The second part describes some applications of geophysical prospection to Cultural Heritage in detailed case histories, divided in sections relative to monuments, historical buildings, urban centres, archaeological parks and ancient viability. Moreover, examples of integration of three-dimensional reliefs and geophysical diagnostic of a monuments and studies of large scale reconnaissance implemented into a Geographical Information System are treated. In each case study the authors cover the description of the archaeological or historical contest; an explanation of the problem to solve; a choice of the geophysical methods; the setting of the procedure of data acquisition; techniques of data processing; a representation, interpretation, and discussion of the results.
The monograph introduces the reader to the world of inductive well logging - an established method for surveying the electrical conductivity of rocks surrounding a borehole. The emphasis is on developing a theory of inductive logging and on understanding logging tools basic physics, since this theory and understanding furnish valuable insights for inventing practical induction logging techniques.
This book explores the dynamics of planetary and stellar fluid layers, including atmospheres, oceans, iron cores, and convective and radiative zones in stars, describing the different theoretical, computational and experimental methods used to study these problems in fluid mechanics, including the advantages and limitations of each method for different problems. This scientific domain is by nature interdisciplinary and multi-method, but while much effort has been devoted to solving open questions within the various fields of mechanics, applied mathematics, physics, earth sciences and astrophysics, and while much progress has been made within each domain using theoretical, numerical and experimental approaches, cross-fertilizations have remained marginal. Going beyond the state of the art, the book provides readers with a global introduction and an up-to-date overview of relevant studies, fully addressing the wide range of disciplines and methods involved. The content builds on the CISM course "Fluid mechanics of planets and stars", held in April 2018, which was part of the research project FLUDYCO, supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program.
This book is the result of collaboration within the framework of the Third International Scientific School for Young Scientists held at the Ishlinskii Institute for Problems in Mechanics of Russian Academy of Sciences, 2017, November. The papers included describe studies on the dynamics of natural system - geosphere, hydrosphere, atmosphere-and their interactions, the human contribution to naturally occurring processes, laboratory modeling of earth and environment processes, and testing of new developed physical and mathematical models. The book particularly focuses on modeling in the field of oil and gas production as well as new alternative energy sources.
These proceedings present selected research papers from CSNC2017, held during 23th-25th May in Shanghai, China. The theme of CSNC2017 is Positioning, Connecting All. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2017, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.
An Introduction to Mining Seismology describes comprehensively the
modern methods and techniques used to monitor and study seismicity
and rockbursts in mines. Key case histories from various worldwide
mining districts clearly illustrate and skillfully emphasize the
practical aspects of mining seismology. This text is intended as a
handbook for geophysicists and mining and rock mechanics engineers
working at mines. It will also serve as an essential reference tool
for seismologists working at research institutions on local
seismicity not necessarily induced by mining.
This detailed book systematically investigates subsurface geological fractures using rock mechanics, geology, and geophysics. Based on geological fracture mechanisms and fracture boundary conditions, it presents new finite-difference equations for the simulation of seismic wave responses to geological fractures, and proposes innovative AVO inversion equations for the accurate estimation of the rock properties of the fractured medium. It employs schematics, snapshots, color images and charts to demonstrate the mechanical characteristics of the fractures, the seismic wave-field response to the fractures, the seismic data attributes of the fractures and the rock properties of the fractures obtained via inversion. It provides a new methodology for enhancing geological fracture detection technology and for the accurate delineation of fractured reservoirs that ultimately benefits reservoir and mining engineers, geologists and geophysicists in terms of optimizing reservoir recovery, well performance and mining safety.
This book lays the foundations of gas- and fluid dynamics.The basic equations are developed from first principles, building on the (assumed) knowledge of Classical Mechanics. This leads to the discussion of the mathematical properties of flows, conservation laws, perturbation analysis, waves and shocks. Most of the discussion centers on ideal (frictionless) fluids and gases. Viscous flows are discussed when considering flows around obstacles and shocks. Many of the examples used to illustrate various processes come from astrophysics and geophysical phenomena.
This volume offers an overview of the state-of-the-art theoretical and practical approaches currently used for geophysical data interpretation. It includes new methods and techniques for solving data processing problems, and an analysis of geopotential fields by international researchers. It discusses topics such as: 1. Theoretical issues of interpretation of gravitational, magnetic and electric fields, including general methods of interpreting potential fields and other geophysical data. 2. Modern algorithms and computer technologies for interpretating geophysical fields. 3. The study of Earth deep structure using terrestrial and satellite potential field anomalies. 4. Geological interpretation of gravitational, magnetic and electric fields. This proceedings book is of interest to all geophysical researchers.
Explores the many facets of redox exchanges that drive magma's behavior and evolution, from the origin of the Earth until today The redox state is one of the master variables behind the Earth's forming processes, which at depth concern magma as the major transport agent. Understanding redox exchanges in magmas is pivotal for reconstructing the history and compositional make-up of our planet, for exploring its mineral resources, and for monitoring and forecasting volcanic activity. Magma Redox Geochemistry describes the multiple facets of redox reactions in the magmatic realm and presents experimental results, theoretical approaches, and unconventional and novel techniques. Volume highlights include: Redox state and oxygen fugacity: so close, so far Redox processes from Earth's accretion to global geodynamics Redox evolution from the magma source to volcanic emissions Redox characterization of elements and their isotopes The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
This book presents the first overview of the composition and structure of the Earth's lower mantle. The first part focuses on the study of lower-mantle minerals, identified as inclusions in diamonds from different regions of the world. Three associations are established among the lower-mantle minerals: ultramafic, mafic, and carbonatic. The carbonatic association is of particular interest because it characterizes the media of natural diamond formation. In turn, the second part analyzes the structure of the lower mantle, revealing its heterogeneous composition. It is based on the results of experiments demonstrating phase transitions in lower-mantle minerals, and on seismological data. Deep-seated earthquakes point to the presence within the lower mantle of numerous seismic boundaries caused by mineral structure transitions. In closing, the last part of the book compares observed data with experimental data, highlighting several discrepancies that indicate Earth may have a more complex planetary history than previously assumed, and examining its primarily non-chondritic composition.
This book on space geodesy presents pioneering geometrical approaches in the modelling of satellite orbits and gravity field of the Earth, based on the gravity field missions CHAMP, GRACE and GOCE in the LEO orbit. Geometrical approach is also extended to precise positioning in space using multi-GNSS constellations and space geodesy techniques in the realization of the terrestrial and celestial reference frame of the Earth. This book addresses major new developments that were taking place in space geodesy in the last decade, namely the availability of GPS receivers onboard LEO satellites, the multitude of the new GNSS satellite navigation systems, the huge improvement in the accuracy of satellite clocks and the revolution in the determination of the Earth's gravity field with dedicated satellite missions.
This volume presents different studies carried out on induced seismicity, both from experimental and theoretical viewpoints. Several examples of seismic activity induced by underground nuclear explosions, impoundment of artificial reservoirs, and mining activities are given and discussed. Another important subject which is covered is earthquakes induced by other large earthquakes. Further, tectonic stress release in the immediate vicinity of an underground nuclear explosion is treated. The release produces aftershocks of small magnitude, usually for several weeks, occurring a few kilometers within the shot point. This phenomenon is of importance in the context of monitoring a Comprehensive Test Ban Treaty. |
You may like...
Seismic While Drilling - Fundamentals of…
F.B. Poletto, F. Miranda
Paperback
R4,457
Discovery Miles 44 570
Geophysical Exploration of the Solar…
Cedric Schmelzbach, Simon Christian Stahler
Hardcover
R4,816
Discovery Miles 48 160
Petrophysical Characterization and…
Jianchao Cai, Xiangyun Hu
Paperback
|