![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics > Geophysics
Earthquakes and Sustainable Infrastructure: Neodeterministic (NDSHA) Approach Guarantees Prevention Rather Than Cure communicates in one comprehensive volume the state-of-the-art scientific knowledge on earthquakes and related risks. Earthquakes occur in a seemingly random way and, in some cases, it is possible to trace seismicity back to the concept of deterministic chaos. Therefore, seismicity can be explained by a deterministic mechanism that arises as a result of various convection movements in the Earth's mantle, expressed in the modern movement of lithospheric plates fueled by tidal forces. Consequently, to move from a perspective focused on the response to emergencies to a new perspective based on prevention and sustainability, it is necessary to follow this neodeterministic approach (NDSHA) to guarantee prevention, saving lives and infrastructure. This book describes in a complete and consistent way an effective explanation to complex structures, systems, and components, and prescribes solutions to practical challenges. It reflects the scientific novelty and promises a feasible, workable, theoretical and applicative attitude. Earthquakes and Sustainable Infrastructure serves a "commentary role" for developers and designers of critical infrastructure and unique installations. Commentary-like roles follow standard, where there is no standard. Mega-installations embody/potentiate risks; nonetheless, lack a comprehensive classic standard. Every compound is unique, one of its kind, and differs from others even of similar function. There is no justification to elaborate a common standard for unique entities. On the other hand, these specific installations, for example, NPPs, Naval Ports, Suez Canal, HazMat production sites, and nuclear waste deposits, impose security and safety challenges to people and the environment. The book offers a benchmark for entrepreneurs, designers, constructors, and operators on how to compile diverse relevant information on site-effects and integrate it into the best-educated guess to keep safe and secure, people and environment. The authors are eager to convey the entire information and explanations to our readers, without missing either accurate information or explanations. That is achieved by "miniaturization," as much is possible, not minimization. So far, the neodeterministic method has been successfully applied in numerous metropolitan areas and regions such as Delhi (India), Beijing (China), Naples (Italy), Algiers (Algeria), Cairo (Egypt), Santiago de Cuba (Cuba), Thessaloniki (Greece), South-East Asia (2004), Tohoku, Japan (2011), Albania (2019), Bangladesh, Iran, Sumatra, Ecuador, and elsewhere. Earthquakes and Sustainable Infrastructure includes case studies from these areas, as well as suggested applications to other seismically active areas around the globe. NDSHA approaches confirm/validate that science is looming to warn. Concurrently, leaders and practitioners have to learn to use rectified science in favor of peoples' safety. State-of-the-art science does have the know-how to reduce casualties and structural damage from potential catastrophes to a bearable incident.
The NATO ASI held in the Geophysical Institute, University of Alaska Fairbanks, June 17-28, 1991 was, we believe, the first attempt to bring together geoscientists from all the disciplines related to the solar system where fluid flow is a fundamental phenomenon. The various aspects of flow discussed at the meeting ranged from the flow of ice in glaciers, through motion of the solar wind, to the effects of flow in the Earth's mantle as seen in surface phenomena. A major connecting theme is the role played by convection. For a previous attempt to review the various ways in which convection plays an important role in natural phenomena one must go back to an early comprehensive study by 1. Wasiutynski in "Astro physica Norvegica" vo1. 4, 1946. This work, little known now perhaps, was a pioneering study. In understanding the evolution of bodies of the solar system, from accretion to present-day processes, ranging from interplanetary plasma to fluid cores, the understanding of flow hydrodynamics is essentia1. From the large scale in planetary atmospheres to geological processes, such as those seen in magma chambers on the Earth, one is dealing with thermal or chemical convection. Count Rumford, the founder of the Royal Institution, studied thermal convection experimentally and realized its practical importance in domestic contexts."
The recent explosion of global and regional seismicity data in the world requires new methods of investigation of microseismicity and development of their modelling to understand the nature of whole earth mechanics. In this book, the author proposes a powerful tool to reveal the characteristic features of global and regional microseismicity big data accumulated in the databases of the world. The method proposed in this monograph is based on (1) transformation of stored big data to seismicity density data archives, (2) linear transformation of microseismicity density data matrixes to correlated seismicity matrixes by means of the singular value decomposition method, (3) time series analyses of globally and regionally correlated seismicity rates, and (4) the minimal non-linear equations approximation of their correlated seismicity rate dynamics. Minimal non-linear modelling is the manifestation for strongly correlated seismicity time series controlled by Langevin-type stochastic dynamic equations involving deterministic terms and random Gaussian noises. A deterministic term is composed minimally with correlated seismicity rate vectors of a linear term and of a term with a third exponent. Thus, the dynamics of correlated seismicity in the world contains linearly changing stable nodes and rapid transitions between them with transient states. This book contains discussions of future possibilities of stochastic extrapolations of global and regional seismicity in order to reduce earthquake disasters worldwide. The dataset files are available online and can be downloaded at springer.com.
This book is intended to give an introduction into the meteorological boundary conditions for power generation from the wind, onshore and offshore. It is to provide reliable meteorological information for the planning and running of this important kind of renewable energy. This includes the derivation of wind laws and wind profile descriptions, especially those above the logarithmic surface layer. Winds over complex terrain and nocturnal low-level jets are considered as well. A special chapter is devoted to the efficiency of large wind parks and their wakes.
This book contains the written, thoroughly reviewed versions of both invited lectures and regular presentations given at the 36th International School of Hydraulics, held at Jachranka in Poland on May 23-26, 2017. The contributions cover recent findings in the areas of mathematical modeling as well as experimental investigations related to free surface flows and pollution, sediment and heat transport processes in rivers. Better understanding of environmental flows requires cognition of physical, chemical and biological attributes of flowing water and therefore hydraulic research becomes strongly interdisciplinary field of science. The authors also realize that fundamental knowledge of environmental hydraulics problems is absolutely essential for planning and design of systems to manage water resources. Nowadays the readers face a rapid development of hydraulic research due to a boom in the computer sciences and measurement techniques and this is what this book is about. Eminent world leading experts in this field and young researchers from sixteen countries from all over the world contributed to this book.
For many years, the two subjects of (1) postglacial rebound and its potential for generating earthquakes and (2) the seismicity of passive continental ml!rgins have been of interest and concern to earth scientists on both sides of the North Atlantic. New data and theoretical interpretations have given rise to vigorous discussions on how much the two phenomena inter-relate and whether a significant controlling factor on seismicity in northeastern North America and Scandinavia is the crustal uplift that has been occurring since the latest ice age. The lack of a good understanding of these phenomena presented a particular problem for engineering seismologists attempting to prepare accurate seismic hazard estimates for facili ties both on land (e. g. , nuclear power stations and radioactive waste repositories) and offshore (e. g. , petroleum production facili ties) . The NATO Advanced Research Workshop programme provided an opportuni ty to bring together a group of relevant geophysicists, geologists and geodesists from both sides of the North Atlantic, and a workshop on "Causes and Effects of Earthquakes at Passive Margins and in Areas of Postglacial Rebound on both Sides of the North Atlantic" was held in Vordingborg, Denmark, 9-13 May 1988. The sup port of the NATO Science Committee is gratefully acknowledged.
For the fourth consecutive year, the Association of Geographic Infor- tion Laboratories for Europe (AGILE) promoted the edition of a book with the collection of the scientific papers that were submitted as full-papers to the AGILE annual international conference. Those papers went through a th competitive review process. The 13 AGILE conference call for fu- papers of original and unpublished fundamental scientific research resulted in 54 submissions, of which 21 were accepted for publication in this - lume (acceptance rate of 39%). Published in the Springer Lecture Notes in Geoinformation and Car- th graphy, this book is associated to the 13 AGILE Conference on G- graphic Information Science, held in 2010 in Guimaraes, Portugal, under the title "Geospatial Thinking." The efficient use of geospatial information and related technologies assumes the knowledge of concepts that are fundamental components of Geospatial Thinking, which is built on reasoning processes, spatial conc- tualizations, and representation methods. Geospatial Thinking is associated with a set of cognitive skills consisting of several forms of knowledge and cognitive operators used to transform, combine or, in any other way, act on that same knowledge. The scientific papers published in this volume cover an important set of topics within Geoinformation Science, including: Representation and Visualisation of Geographic Phenomena; Spatiotemporal Data Analysis; Geo-Collaboration, Participation, and Decision Support; Semantics of Geoinformation and Knowledge Discovery; Spatiotemporal Modelling and Reasoning; and Web Services, Geospatial Systems and Real-time Appli- tions."
A reprinting of eight articles from Surveys in geophysics, v.10, nos.2-4 (1989) on geophysical data processing. The topics include data sets from shear waves, which, generated by mode conversion, are used in solving reservoir problems; the zero-phase term, essential to further processing, and the d
This book is devoted to the quantitative physical modeling of subduction and subduction-related processes. It presents a coherent description of the modeling method (including similarity criteria, and a novel applied experimental technique), results from model experiments, theoretical analysis of results on the basis of continuum mechanics, and their geodynamic interpretation. Subduction is modeled in general as well as applied to particular regions using both 2-D and 3-D approaches, with both slab-push and slab-pull driving forces. The modeling covers all stages from subduction initiation to death', different regimes of subduction producing back arc extension and compression, blocking of subduction and jumps of subduction zone, arc-continent collision and continental subduction. This work is for geologists and geophysicists interested in geodynamics of the convergent plate boundaries and in mechanics of the lithosphere.
Landslide Risk Management comprises the proceedings of the International Conference on Landslide Risk Management, held in Vancouver, Canada, from May 31 to June 3, 2005. The first part of the book contains state-of-the-art and invited lectures, prepared by teams of authors selected for their experience in specific topics assigned to them by the JTC-1 Committee. The second part is a selection of papers submitted to the conference, most of which serve as case-history illustrations of projects on landslide risk management. This reference work presents the current status of landslide risk management as viewed by experts from around the world.
The book offers a review of the work of the Polish Research Group on selected topics of environmental magnetism: the application of magnetic methods to study pollution of outdoor and indoor air, street dust, polluted soil, air filters and indoor dust; the use of magnetic properties to study pedogenic processes in soils and soil structure; as well as deposition processes in recent sediments. The authors focus on detailed cases and provide in-depth explanations of the causes of and relations between physical processes. The examples of different studies demonstrate how to apply magnetometry to solve problems in related disciplines, how to better understand the complexity of the magnetic structure of substances and mediums as well as how to trace interactions between the environment and natural and anthropogenic factors.
Particularly intense lightning discharges can produce transient luminous events above thunderclouds, termed sprites, elves and jets. These short lived optical emissions in the mesosphere can reach from the tops of thunderclouds up to the ionosphere; they provide direct evidence of coupling from the lower atmosphere to the upper atmosphere. Sprites are arguably the most dramatic recent discovery in solar-terrestrial physics. Shortly after the first ground based video recordings of sprites, observations on board the Space Shuttle detected sprites and elves occurring all around the world. These reports led to detailed sprite observations in North America, South America, Australia, Japan, and Europe. Subsequently, sprites were detected from other space platforms such as the International Space Station and the ROCSAT satellite. During the past 15 years, more than 200 contributions on sprites have been published in the scientific literature to document this rapidly evolving new research area. The need for international information exchange was quickly recognized, and sprite sessions became a permanent feature with a constantly growing number of contributions in the scientific communities of the American Geophysical Union (AGU), the International Union of Radio Science (URSI), the International Association of Geomagnetism and Aeronomy (IAGA) and the European Geosciences Union EGU).
This book draws together a series of studies of spit geomorphology and temporal evolution from around the world. The volume offers some unique insights into how these landforms are examined scientifically and how we as humans impact them, offering a global perspective on spit genesis and evolution. Spits are unique natural environments whose evolution is linked to the adjacent coast and near shore morphology, sediment supply, coastal dynamics and sea-level change. Over the past century, Global Mean Sea Level (GMSL) has risen by 10 to 20 centimetres and many coastal spits represent the first sentinel against coastal submersion. Scientific research indicates that sea levels worldwide have been rising at a rate of 3.5 millimetres per year since the early 1990s, roughly twice the average speed of the preceding 80 years. This trend, linked to global warming will undoubtedly cause major changes in spit morphology. Spits are highly mobile coastal landforms that respond rapidly to environmental change. They therefore represent a signature of past environmental change and provide a landform indicator of climate change.
In their search for solutions to problems concerning the dynamics
of the Earth as a self-gravitating body, the authors have applied
the fundamentals found in their book "Jacobi Dynamics" (1987,
Reidel). First, satellite observations have shown that the Earth
does not remain in hydrostatic equilibrium, which forms the
physical basis of modern geodynamics. Secondly, satellite data have
established a relationship between the planet's polar moment of
inertia and the potential of the Earth's outer force field, which
proves the most basic point of Jacobi dynamics. This allowed the
authors to revise their derivation of the classical virial theorem,
introducing the concept of a volumetric force and volumetric
moment, and so to obtain a generalized virial theorem in the form
of Jacobi's equation.
Tutorials on Mossbauer Spectroscopy
This book presents contributions to the 9th International Workshop on Bifurcation and Degradation in Geomaterials held in Porquerolles, France, May 23-26, 2011. This series of conferences, started in the early 1980s, is dedicated to the research on degradation and instability phenomena in geomaterials. The volume gathers a series of manuscripts by brilliant international scholars reflecting recent trends in theoretical and experimental research in geomechanics. It incorporates contributions on topics like instability analysis, localized and diffuse failure description, multi-scale modeling and applications to geo-environmental issues. This book will be valuable for anyone interested in the research on degradation and instabilities in geomechanics and geotechnical engineering, appealing to graduate students, researchers and engineers alike.
James L. Burch*C. Philippe Escoubet Originally published in the journal Space Science Reviews, Volume 145, Nos 1-2, 1-2. DOI: 10. 1007/s11214-009-9532-7 (c) Springer Science+Business Media B. V. 2009 The IMAGE and CLUSTER spacecraft have revolutionized our understanding of the inner magnetosphere and in particular the plasmasphere. Before launch, the plasmasphere was not a prime objective of the CLUSTER mission. In fact, CLUSTER might not have ever observed this region because a few years before the CLUSTER launch (at the beginning of the 1990s), it was proposed to raise the perigee of the orbit to 8 Earth radii to make multipoint measu- ments in the current disruption region in the tail. Because of ground segment constraints, this proposal did not materialize. In view of the great depth and breadth of plasmaspheric research and numerous papers published on the plasmasphere since the CLUSTER launch, this choice certainly was a judicious one. The fact that the plasmasphere was one of the prime targets in the inner magnetosphere for IMAGE provided a unique opportunity to make great strides using the new and comp- mentary measurements of the two missions. IMAGE, with sensitive EUV cameras, could for the rst time make global images of the plasmasphere and show its great variability d- ing storm-time. CLUSTER, with four-spacecraft, could analyze in situ spatial and temporal structures at the plasmapause that are particularly important in such a dynamic system.
This book is an enlarged second edition of a monograph published in the Springer AGEM2-Series, 2009. It presents, in a consistent and unified overview, a setup of the theory of spherical functions of mathematical (geo-)sciences. The content shows a twofold transition: First, the natural transition from scalar to vectorial and tensorial theory of spherical harmonics is given in a coordinate-free context, based on variants of the addition theorem, Funk-Hecke formulas, and Helmholtz as well as Hardy-Hodge decompositions. Second, the canonical transition from spherical harmonics via zonal (kernel) functions to the Dirac kernel is given in close orientation to an uncertainty principle classifying the space/frequency (momentum) behavior of the functions for purposes of data analysis and (geo-)application. The whole palette of spherical functions is collected in a well-structured form for modeling and simulating the phenomena and processes occurring in the Earth's system. The result is a work which, while reflecting the present state of knowledge in a time-related manner, claims to be of largely timeless significance in (geo-)mathematical research and teaching.
In order to keep pace with the continuing development of geophysical exploration methods, the sixth volume in this series concentrates on topical subjects that the working geophysicist may be called upon to implement or test.
These proceedings deal with the fundamentals and applications of poromechanics to geomechanics, material sciences, geophysics, acoustics and biomechanics. They discuss the state of the art in such topics as constitutive modelling and upscaling methods.
This book offers solutions to problems of hazard control of landslides in the highly seismic hilly areas and of tunnels in the complex geological formations. It is complementary to authors' book on Rock Mass Classification. Chapters on practical knowledge of both landslide and tunnelling hazards and behaviour of rock joints and rock masses are presented for preparation of realistic input data. This data is easy to prepare. The emphasis is on proper design of remedial measures and not on rigorous analysis. There are 18 practical and field-tested software packages on landslide in soil and rock (Part A) and 6 packages on tunnels (Part B) along with source programs, user manuals and solved examples. The computer programs on back analysis of rock/soil slopes are useful to analyse shear strength parameters along potential failure surfaces. A special feature of these programs/codes is approximate estimation of the dynamic settlement of slopes during earthquake. The computer programs on tunnels/shafts are equally simple to use for on-spot-design of supports with shotcrete/SFRS and rock bolts. Program on squeezing deals with most challenging problem of tunnelling in weak rocks. The chapter on subsidence due to coal mines is based on extensive field research.
Physical and chemical studies of the earth and planets along with their surroundings are now developing very rapidly. As these studies are of essentially international charac ter, many international conferences, symposia, seminars and workshops are held every year. To publish proceedings of these meetings is of course important for tracing development of various disciplines of earth and planetary sciences though publishin, g is fast getting to be an expensive business. It is my pleasure to learn that the Center for Academic Publications Japan and the Japan Scientific Societies Press have agreed to undertake the publication of a series "Ad vances in Earth and Planetary Sciences" which should certainly become an important medium for conveying achievements of various meetings to the academic as well as non academic scientific communities. It is planned to publish the series mostly on the basis of proceedings that appear in the Journal of Geomagnetism and Geoelectricity edited by the Society of Terrestrial Magnetism and Electricity of Japan, the Journal of Physics of the Earth by the Seismological Society of Japan and the Volcanological Society of Japan, and the Geochemical Journal by the Geochemical Society of Japan, although occasional volumes of the series will include independent proceedings. Selection of meetings, of which the proceedings will be included in the series, will be made by the Editorial Committee for which I have the honour to work as the General Editor."
This book contains the results of a 9 year (1995-2004) investigation of the Canary Islands Exclusive Economic Zone, using state of the art technology. The coverage includes a multibeam survey demonstrating the magnitude of catastrophic failures of the Canary Islands; a comparison of the morphology of the Canary Islands with Hawaii; evaluation of hydrothermal activity associated with Mesozoic salt diapirs; and many more articles. |
![]() ![]() You may like...
Strength of Materials and Structures
Carl T.F. Ross, John Case, …
Paperback
The South African Guide To Gluten-Free…
Zorah Booley Samaai
Paperback
Directed Algebraic Topology and…
Lisbeth Fajstrup, Eric Goubault, …
Hardcover
R3,476
Discovery Miles 34 760
|