![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Geophysics
Radar Remote Sensing: Applications and Challenges advances the scientific understanding, development, and application of radar remote sensing using monostatic, bistatic and multi-static radar geometry. This multidisciplinary reference pulls together a collection of the recent developments and applications of radar remote sensing using different radar geometry and platforms at local, regional and global levels. Radar Remote Sensing is for researchers and practitioners with earth and environmental and meteorological sciences, who are interested in radar remote sensing in ground based scatterometer and SAR systems; air borne scatterometer and SAR systems; space borne scatterometer and SAR systems.
Three eminent scientists, each well known for the clarity of their writing, present for students and researchers what is known about the internal structure, origin and evolution of White Dwarfs, Neutron Stars and Black Holes, all objects at the final stage of stellar evolution. They cover fascinating topics such as pulsation of white dwarfs, millisecond pulsars or the dynamics around black holes. The book is written for graduate students in astrophysics, but is also of interest to professional astronomers and physicists.
This book contains a comprehensive study of the internal ocean waves, which play a very important role in ocean physics providing mechanisms for ocean water mixing and circulation, as well as the transportation of gases, nutrients, and a very large number of marine organisms in the ocean body. In contrast to surface waves, the literature on internal waves is not so numerous, mainly due to the difficulties in experimental data collection and in the mathematical description of internal wave propagation. In this book, the basic mathematical principles, a physical description of the observed phenomena, and practical theoretical methods of determination of wave parameters as well as the original method of observation using moving sensors are presented. Special attention is paid to internal wave propagation over changing bottom topographies in shallow seas such as the Baltic Sea. The book is supplemented with an extended list of relevant and extended bibliographies, a subject index, and an author index.
This book presents the kinematic earthquake rupture studies from moment tenor to spatial-temporal rupture imaging. For real-time seismic hazard monitoring, the new stable automatic moment tensor (AutoBATS) algorithm is developed and implemented for the real-time MT reports by the Taiwan Earthquake Science Information System (TESIS). In order to understand the rupture behavior of the 2013 Mw 8.3 Okhotsk deep earthquake sequence, the 3D MUltiple SIgnal Classification Back Projection (MUSIC BP) with P and pP phases is applied. The combined P- and pP-wave BP imaging of the mainshock shows two stages of anti-parallel ruptures along two depths separating for about 10~15 km. Unusual super-shear ruptures are observed through the 3D BP images of two Mw 6.7 aftershocks. In last two chapters, the 3D BP imaging reveals similar rupture properties of two shallow catastrophic earthquakes (Mw=6.4) in southwestern Taiwan. Both the 2010 Jiashian and 2016 Meinong earthquakes ruptured westward with similar velocity of ~2.5 km/s along a NE-ward shallow dipping blind fault. The rupture similarities of the doublet suggest two parallel elongate asperities along the causative fault. After several decades of seismic quiescence, the 2010 Jiashian event initiated the rupture at the deeper asperity and triggered the shallower asperity which caused catastrophes six years later.
GNSS Seismogeodesy: Theory and Applications combines GNSS and seismology theory and applications to offer both disciplines the background information needed to combine forces. It explores the opportunities for integrating GNSS and seismometers, as well as applications for earthquake and tsunami early warning applications. The book allows seismologists to better understand how GNSS positions are computed and how they can be combined with seismic data and allows geodesists to better understand how to apply GNSS to monitoring of crustal motion. This book is a valuable reference for researchers and students studying the interdisciplinary connection between GNSS geodesy and strong-motion seismology. It will also be ideal for anyone working on new approaches for monitoring and predicting geologic hazards.
Structural geologists are well aware of the fact that isotropic rocks are quite exceptional in nature. Whicheverorigin, sedimentary, metamorphicormagmatic, rocks are shaped with a plane of mineral flattening, the foliation in geologists' jargon, and with a line ofmineral elongation, the lineation. Just like a good quarryman, a trained structural geologistwill detectapreferredorientationin an apparently isotropic granite. Preferred mineral orientation and thus structural anisotropy are the rule in nature. Consideringthe largevariationsinelasticcoefficientsofrock-forming minerals, itcould be predicted that, in turn, seismic anisotropy should exist and be important, provided thatdomains withasimilarstructural signatureare largeenough to affectseismic waves. This is why, in 1982 at a conference held in Frankfurt, which was oneofthe fIrst meetings devoted to the subject of seismic anisotropy, I asked Don Anderson the question of why seismologists had not considered earlier in their models the obvious constraint of anisotropy. I still remember Don's answer: "Adolphe, we knew that our isotropic models were not very good but we had no other choice. It is simply that, so far, computerswere not largeenough tointegrate the anisotropy parameter." Changingisotropic glassesfor anisotropic ones permits us to obtain betterand more realistic seismic modelsofthe Earth's interior, but, maybe more importantly, it has, for a seismologist, the farreaching consequenceofsteppinginto the fIeld ofgeodynamics.
This book covers in detail the entire workflow for quantitative seismic interpretation of subsurface modeling and characterization. It focusses on each step of the geo-modeling workflow starting from data preconditioning and wavelet extraction, which is the basis for the reservoir geophysics described and introduced in the following chapters. This book allows the reader to get a comprehensive insight of the most common and advanced workflows. It aims at graduate students related to energy (hydrocarbons), CO2 geological storage, and near surface characterization as well as professionals in these industries. The reader benefits from the strong and coherent theoretical background of the book, which is accompanied with real case examples.
Although considera bIe efforts are now being made to find new sources of energy, alI the experts are agreed that hydrocarbons will have to provide the greater part of our energy needs for a generation ahead. Exploration for and production of hydrocarbons therefore pose a serious problem for our future, as much for the quantitative satisfaction of our requirements as for our search for self-sufficiency in energy. As a direct result of improvements in technology throughout the world, geophysics has progressively enlarged its field of influence in the realms of exploration and production. But amongst the various geophysical methods available, seismic reflection has gradually become accepted as the basic tool of the oiI prospector. Reflection seismology has reached and consolidated this position because it has shown itself to be capable of adapting to the increasing complexity of the requirements of exploration. Initially directed towards geometric mapping of the sub-surface, it became the means of detection of structural traps in geotectonically quiescent regions, and thereafter in increasingly complex surroundings. It has enabled us to clothe the structural framework with a lithology, initially approximate, but becoming more and more precise, assisting the explorer to locate stratigraphic traps. Further developments enable us under favourable circumstances to estimate the quality of the deposits and to detect the presence of fluids and of their interfaces; it then becomes an unrivalled tool for the producer, both in the development of deposits and in the application of enhanced recovery methods.
TO APPLIED GEOPHYSICS STANIS LAY MARE~, et al. Faculty of Science, Charles University, Prague SPRINGER-SCIENCE+BUSINESS MEDIA, B. V. Library of Congress Cataloging in Publication Data Mares, Stanislav Introduction to applied geophysics Translation of Uvod do uzite geofyziky Bibliography: p. Includes index. 1. Geophysics. 2. Prospecting-Geophysical methods. I. Title QC802. A1M3713 1984 551 84-4753 ISBN 978-90-481-8374-6 ISBN 978-94-015-7684-0 (eBook) DOI 10. 1007/978-94-015-7684-0 AII Rights Reserved (c) 1984 by Stanislav Mard et al. Originally published by Kluwer Academic Publishers in 1984 Softcover reprint ofthe hardcover lst edition 1984 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner CONTENTS XI INTRODUCTION LIST OF PRINCIPAL SYMBOLS AND UNITS USED XIII CHAPTER I. GRAVIMETRIC METHODS (S. Hrach) I. I. Physical principles of gravimetric methods- Volume gravitational potential I 1. 2. Gravity field of the Earth 3 1. 3. Anomalies of gravitational acceleration-Gravity anomalies 9 1. 3. 1. Faye anomaly-Free-air anomaly 9 1. 3. 2. Bouguer anomalies 10 1. 3. 3. Isostatic anomaly 14 1. 3. 4. Geological significance of anomalies 17 1. 4. Rock densities 19 1. 4. 1. Natural rock densities 20 1. 4. 2. Rock density determination 22 1. 4. 3. Determination of density characteristics 25 25 1. 5. Gravity observations 26 1. 5. 1. Instruments for absolute gravity observations 1. 5. 2.
This book deals with water management, one of the most challenging issues of contemporary society. Research and innovation in the field of water management must address certain fundamental aspects: access to water, water quality, water treatment, transboundary effect of water, etc. A comprehensive analysis was performed in a national research program of Moldova, entitled "Research and management of water quality". The main goal of the research program was to create and improve the legal, scientific and methodological, technological basis and sustainable development of water, implementation of modern technologies in water supply, treatment and reuse. Other priorities include expansion of access to water sources, improvement of environmental protection, especially water protection against pollution and depletion, efficient water use and establishing an effective monitoring system for disaster prevention. The topics concern research of water structure and quality, surface water, groundwater, water treatment, irrigation technologies and water pollution by remains from industry, one of the main environmental problems of our time. The book helps to get to coherent water policies of states.
This book focuses on motions of incompressible ?uids of a freely moving surface being in?uenced by both the Earth's rotation and density strati?cation. In contrast to traditional textbooks in the ?eld of geophysical ?uid dynamics, such as those by by Cushman-Roisin (1994) and Gill (1982), this book uses the method of proce- oriented hydrodynamic modelling to illustrate a rich variety of ?uid phenomena. To this end, the reader can adopt the model codes, found on the Springer server accompanying this book, to reproduce most graphs of this book and, even better, to create animation movies. The reader can also employ the codes as templates for own independent studies. This can be done by a lay person as a hobby activity, undergraduate or postgraduate students as part of their education, or professional scientists as part of research. Exercises of this book are run with open-source software that can be freely downloaded from the Internet. This includes the FORTRAN 95 compiler "G95" used for execution of model simulations, the data visualisation program "SciLab", and "ImageMagick" for the creation of graphs and GIF animations, which can be watched with most Internet browsers.
Earth's Core: Geophysics of a Planet's Deepest Interior provides a multidisciplinary approach to Earth's core, including seismology, mineral physics, geomagnetism, and geodynamics. The book examines current observations, experiments, and theories; identifies outstanding research questions; and suggests future directions for study. With topics ranging from the structure of the core-mantle boundary region, to the chemical and physical properties of the core, the workings of the geodynamo, inner core seismology and dynamics, and core formation, this book offers a multidisciplinary perspective on what we know and what we know we have yet to discover. The book begins with the fundamental material and concepts in seismology, mineral physics, geomagnetism, and geodynamics, accessible from a wide range of backgrounds. The book then builds on this foundation to introduce current research, including observations, experiments, and theories. By identifying unsolved problems and promising routes to their solutions, the book is intended to motivate further research, making it a valuable resource both for students entering Earth and planetary sciences and for researchers in a particular subdiscipline who need to broaden their understanding.
Over the years, many leading European graduate schools in the field of astrophysical and space plasmas have operated within the framework of the research network, "Theory, Observations, and Simulations in Turbulence in Space Plasmas." This text is a set of lectures and tutorial reviews culled from the relevant work of all those schools. It emphasizes applications on solar coronae, solar flares, and the solar wind. In bridging the gap between standard textbook material and state-of-the-art research, this text offers a broad flavor to postgraduate and postdoctoral students just coming to the field. And because of its unique mix, it will also be useful to lecturers looking for advanced teaching material for their seminars and courses.
This book addresses time-bound geotectonic evolution of the various geological terrains of the Indian continent, on the basis of integrated geophysical studies, like seismic, seismological, gravity, magnetic, magnetotelluric and heat flow, carried out over the past five decades. Further, it discusses elastic and petrophysical properties of the Earth's crust relevant to geological investigations. The book also shares latest findings on the geodynamic development of the Indian shield and nearby continental margins, including Arabian Sea.
The Discovery of the calcareous Ioffe Drift in the SW Atlantic in 2010 opens new perspectives in the contourite theory. Although demonstrating similar behavior relative to bottom water dynamics, rather rare and poorly studied calcareous contourites differ from their terrigenous analogs in origin, grain-size distribution, chemical and mineral composition of sedimentary particles. The detailed multidisciplinary study of the Ioffe Drift produces new knowledge on biogenic contourites deposited in pelagic realm, in conditions of low biological productivity and terrigenous material supply, under the influence of the Antarctic Bottom Water flow from the Vema Channel. The major intervals of prevailing erosion are inferred on the drift from 2.51/2.59 to 1.9 Ma and from 1.6 to 0.81 Ma thus indicating strong paleoceanographic changes most likely associated with the reorganization of deep-sea circulation and increased bottom water production in the Southern Ocean during the Early Pleistocene and, in particular, around the Mid-Pleistocene Transition.
Quantitative Analysis and Modeling of Earth and Environmental Data: Space-Time and Spacetime Data Considerations introduces the notion of chronotopologic data analysis that offers a systematic, quantitative analysis of multi-sourced data and provides information about the spatial distribution and temporal dynamics of natural attributes (physical, biological, health, social). It includes models and techniques for handling data that may vary by space and/or time, and aims to improve understanding of the physical laws of change underlying the available numerical datasets, while taking into consideration the in-situ uncertainties and relevant measurement errors (conceptual, technical, computational). It considers the synthesis of scientific theory-based methods (stochastic modeling, modern geostatistics) and data-driven techniques (machine learning, artificial neural networks) so that their individual strengths are combined by acting symbiotically and complementing each other. The notions and methods presented in Quantitative Analysis and Modeling of Earth and Environmental Data: Space-Time and Spacetime Data Considerations cover a wide range of data in various forms and sources, including hard measurements, soft observations, secondary information and auxiliary variables (ground-level measurements, satellite observations, scientific instruments and records, protocols and surveys, empirical models and charts). Including real-world practical applications as well as practice exercises, this book is a comprehensive step-by-step tutorial of theory-based and data-driven techniques that will help students and researchers master data analysis and modeling in earth and environmental sciences (including environmental health and human exposure applications).
Multifrequency Electromagnetic Data Interpretation for Subsurface Characterization focuses on the development and application of electromagnetic measurement methodologies and their interpretation techniques for subsurface characterization. The book guides readers on how to characterize and understand materials using electromagnetic measurements, including dielectric permittivity, resistivity and conductivity measurements. This reference will be useful for subsurface engineers, petrophysicists, subsurface data analysts, geophysicists, hydrogeologists, and geoscientists who want to know how to develop tools and techniques of electromagnetic measurements and interpretation for subsurface characterization.
An essential text for today's emerging professionals and higher education community, the third edition of Hazard Mitigation and Preparedness provides accessible and actionable strategies to create safer, more resilient communities. Known and valued for its balanced approach, Hazard Mitigation and Preparedness assumes no prior knowledge of the subject, presenting the major principles involved in preparing for and mitigating the impacts of hazards in emergency management. Real-world examples of different tools and techniques allow for the application of knowledge and skills. This new edition includes: Updates to case studies and sidebars with recent disasters and mitigation efforts, including major hurricanes, wildfires, earthquakes, and the COVID-19 pandemic. Summary of the National Flood Insurance Program, including how insurance rates are determined, descriptions of flood maps, and strategies for communities to help reduce premiums for residents. Overview of the ways that climate change is affecting disasters and the tools that emergency managers can use to plan for an uncertain future. Best practices in communication with the public, including models for effective use of social media, behavioral science techniques to communicate information about risk and preparedness actions, and ways to facilitate behavior change to increase the public's level of preparedness. Actionable information to help emergency managers and planners develop and implement plans, policies, and programs to reduce risk in their communities. Updated in-text learning aids, including sidebars, case studies, goals and outcomes, key terms, summary questions and critical thinking exercises for students. An eResource featuring new supplemental materials to assist instructors with course designs. Supplements include PowerPoint slides, tests, instructor lecture notes and learning objectives, key terms and a course syllabus.
This open access book serves as textbook on the physics of the radiation belts surrounding the Earth. Discovered in 1958 the famous Van Allen Radiation belts were among the first scientific discoveries of the Space Age. Throughout the following decades the belts have been under intensive investigation motivated by the risks of radiation hazards they expose to electronics and humans on spacecraft in the Earth's inner magnetosphere. This textbook teaches the field from basic theory of particles and plasmas to observations which culminated in the highly successful Van Allen Probes Mission of NASA in 2012-2019. Using numerous data examples the authors explain the relevant concepts and theoretical background of the extremely complex radiation belt region, with the emphasis on giving a comprehensive and coherent understanding of physical processes affecting the dynamics of the belts. The target audience are doctoral students and young researchers who wish to learn about the physical processes underlying the acceleration, transport and loss of the radiation belt particles in the perspective of the state-of-the-art observations.
Analysis of the orbital motion of the Earth, the Moon and other
planets and their satellites led to the discovery that all bodies
in the Solar System are moving with the first cosmic velocity of
their proto parents. The mean orbital velocity of each planet is
equal to the first cosmic velocity of the Protosun, the radius of
which is equal to the semi-major axis of the planet s orbit. The
same applies for the planets satellites. All the small planets,
comets, other bodies and the Sun itself follow this law, a finding
that has also been proven by astronomical observations. The
theoretical solutions based on the Jacobi dynamics explain the
process of the system creation and decay, as well as the nature of
Kepler s laws.
This book summarizes the author's research resulted in developing the satellite radiothermovision approach which allows retrieving dynamical and energy characteristics of atmospheric mesoscale and synoptic-scale processes based on a close scheme of satellite passive radiometry data processing. The book introduces new applications of the satellite passive microwave observations to detailed systematic study of tropical cyclones' evolution, climatology and characteristics of atmospheric river, parameters of global atmospheric circulation and their variations on climatically significant scales. The results presented in the book demonstrate a clear relation between the convergence/divergence of latent heat from the lower atmosphere to the center of tropical cyclone with variations of its intensity and provide a better insight into the tropical cyclone dynamical energy balance based on remote data.
This book consolidates the latest research on the Hadean Eon - the first 500 million years of Earth history - which has permitted hypotheses of early Earth evolution to be tested, including geophysical models that include the possibility of plate tectonic-like behavior. These new observations challenge the longstanding Hadean paradigm - based on no observational evidence - of a desiccated, lifeless, continent-free wasteland in which surface petrogenesis was largely due to extraterrestrial impacts. The eon was termed "Hadean" to reflect such a hellish environment. That view began to be challenged in 2001 as results of geochemical analyses of greater than 4 billion year old zircons from Australia emerged. These data were consistent with the zircons forming in a world much more similar to today than long thought and interpreted to indicate that sediment cycling was occurring in the presence of liquid water. This new view leaves open the possibility that life could have emerged shortly after Earth accretion. The epistemic limitations under which the old paradigm persisted are closely examined. The book is principally designed as a monograph but has the potential to be used as a text for advanced graduate courses on early Earth evolution.
This book summarizes the latest research on the structural geology of the mobile belts of the Indian subcontinent including the Himalayas, NE Himalayas, Bangladesh thrust belt, Andaman subduction zone, the Aravalli-Delhi, the Central India Tectonic Zone, the Singhbhum, the Eastern Ghats and the Southern granulite terrane. It offers essential information on deformational structures in the mobile belt, such as folding patterns, the character of the shear zone, shear strain analysis, and faults, as well as fault zone rocks. The findings presented here are based on field observations, mapping, sampling and analysis work (e.g. petrographic studies), as well as limited geochemical and geochronological analysis to support the findings. A discussion on the structural evolution of these mobile belts and their connections with other belts rounds out the coverage.
This book presents unique features of the adaptive modeling approach based on new machine learning algorithms for petroleum exploration, development, and production. The adaptive approach helps simulation engineers and geoscientists to create adequate geological and hydrodynamic models. This approach is proven to be a real alternative to traditional techniques, such as deterministic modeling. Currently, machine-learning algorithms grow in popularity because they provide consistency, predictiveness, and convenience. The primary purpose of this book is to describe the theoretical state of the adaptive approach and show some examples of its implementation in simulation and forecasting different reservoir processes.
This book is the outcome of more than a decade of research and technical development activities at Spain's Geological Survey (IGME) concerning shallow geothermal energy, which were pursued in collaboration with other public bodies and European entities. It presents a compilation of papers on the theoretical foundations of, and practical aspects needed to understand the thermal regime of the topmost subsoil, up to 400 m deep, and the exceptional properties that this underground environment offers, which make it the ideal thermal reservoir for heating, ventilation, and air conditioning (HVAC). In the book's first section, the basic theory of thermodynamics as applied to shallow geothermal energy, heat transfer and fluid mechanics in the geological porous medium is developed. The nature of the subsoil's thermal regime in general and in the urban environment in particular is described. The second section introduces readers to the fundamental aspects of thermal installations equipped with geothermal heat pumps, describes the types of geothermal exchangers most commonly used, and reviews the techniques used to obtain the thermal parameters of the terrain. It also discusses the potential environmental impacts of shallow geothermal activity and corresponding management strategies, as well as the legal aspects of its regulation for the governance of shallow geothermal resources in the EU in general and Spain in particular. In closing, the book highlights examples of the methodologies' applications, developed by IGME in the city of Zaragoza and the Canary Islands. The theoretical foundations, systematics and concrete applications make the book a valuable reference source for hydrogeologists, engineers and specialized technicians alike. |
You may like...
Radical Traditions - Reimagining Culture…
Andrew Clay McGraw
Hardcover
R3,842
Discovery Miles 38 420
Wind Energy and Wildlife Interactions…
Johann Koeppel
Hardcover
|