![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics > Geophysics
This book highlights and discusses recent developments that have contributed to an improved understanding of observed mantle heterogeneities and their relation to the thermo-chemical state of Earth's mantle, which ultimately holds the key to unlocking the secrets of the evolution of our planet. This series of topical reviews and original contributions address 4 themes. Theme 1 covers topics in geophysics, including global and regional seismic tomography, electrical conductivity and seismic imaging of mantle discontinuities and heterogeneities in the upper mantle, transition zone and lower mantle. Theme 2 addresses geochemical views of the mantle including lithospheric evolution from analysis of mantle xenoliths, composition of the deep Earth and the effect of water on subduction-zone processes. Theme 3 discusses geodynamical perspectives on the global thermo-chemical structure of the deep mantle. Theme 4 covers application of mineral physics data and phase equilibrium computations to infer the regional-scale thermo-chemical structure of the mantle.
This book is devoted to current advances in the field of nonlinear mathematical physics and modeling of critical phenomena that can lead to catastrophic events. Pursuing a multidisciplinary approach, it gathers the work of scientists who are developing mathematical and computational methods for the study and analysis of nonlinear phenomena and who are working actively to apply these tools and create conditions to mitigate and reduce the negative consequences of natural and socio-economic disaster risk. This book summarizes the contributions of the International School and Workshop on Nonlinear Mathematical Physics and Natural Hazards, organized within the framework of the South East Europe Network in Mathematical and Theoretical Physics (SEENET MTP) and supported by UNESCO. It was held at the Bulgarian Academy of Sciences from November 28 to December 2, 2013. The contributions are divided into two major parts in keeping with the scientific program of the meeting. Among the topics covered in Part I (Nonlinear Mathematical Physics towards Critical Phenomena) are predictions and correlations in self organized criticality, space-time structure of extreme current and activity events in exclusion processes, quantum spin chains and integrability of many-body systems, applications of discriminantly separable polynomials, MKdV-type equations, and chaotic behavior in Yang-Mills theories. Part II (Seismic Hazard and Risk) is devoted to probabilistic seismic hazard assessment, seismic risk mapping, seismic monitoring, networking and data processing in Europe, mainly in South-East Europe. The book aims to promote collaboration at the regional and European level to better understand and model phenomena that can cause natural and socio-economic disasters, and to contribute to the joint efforts to mitigate the negative consequence of natural disasters. This collection of papers reflects contemporary efforts on capacity building through developing skills, exchanging knowledge and practicing mathematical methods for modeling nonlinear phenomena, disaster risk preparedness and natural hazards mitigation. The target audience includes students and researchers in mathematical and theoretical physics, earth physics, applied physics, geophysics, seismology and earthquake danger and risk mitigation.
This book presents the third volume of a complete development of the new structural classification of minerals, which is based on the internal crystal structure, and is therefore its natural classification. Because of the large domain of the mineral kingdom, this work is divided in three volumes, in which the minerals are ordered from the structurally simple to the more complex. Audience: This work will be of particular interest to teachers and research workers of in mineralogy, and in inorganic crystal structures in academia.
For lab courses in Physical Geology. A top-seller for over 35 years with over one million copies sold, this lab manual represents by far the best collection of photos of rocks and minerals-and one of the best compilations of exercises-available. With exercises using maps, aerial photos, satellite imagery, and other materials, this classic manual encompasses all the major geologic processes as well as the identification of rocks and minerals. All changes in the Twelfth Edition are based on reviewer feedback.
Short Historical Overview In the 1940s, two phenomena in the ?eld of cosmic rays (CR) forced scientists to think that the Sun is a powerful source of high-energy particles. One of these was discovered because of the daily solar variation of CR, which the maximum number of CR observed near noon (referring to the existence of continuous ?ux of CR from the direction of the Sun); this became the experimental basis of the theory that CR's originate from the Sun (or, for that matter, from within the solar system) (Alfven 1954). The second phenomenon was discovered when large ?uxes of high energy particles were detected from several solar ?ares, or solar CR. These are the - called ground level events (GLE), and were ?rst observed by ionization chambers shielded by 10 cm Pb (and detected mainly from the secondary muon-component CR that they caused) during the events of the 28th of February 1942, the 7th of March 1942, the 25th of July 1946, and the 19th of November 1949. The biggest such event was detected on the 23rd of February 1956 (see the detailed description in Chapters X and XI of Dorman, M1957). The ?rst phenomenon was investigated in detail in Dorman (M1957), by ?rst correcting experimental data on muon temperature effects and then by using coupling functions to determine the change in particle energy caused by the solar-diurnal CR variation."
Light scattering by densely packed inhomogeneous media is a particularly ch- lenging optics problem. In most cases, only approximate methods are used for the calculations. However, in the case where only a small number of macroscopic sc- tering particles are in contact (clusters or aggregates) it is possible to obtain exact results solving Maxwell's equations. Simulations are possible, however, only for a relativelysmallnumberofparticles,especiallyiftheirsizesarelargerthanthewa- length of incident light. The ?rst review chapter in PartI of this volume, prepared by Yasuhiko Okada, presents modern numerical techniques used for the simulation of optical characteristics of densely packed groups of spherical particles. In this case, Mie theory cannot provide accurate results because particles are located in the near ?eld of each other and strongly interact. As a matter of fact, Maxwell's equations must be solved not for each particle separately but for the ensemble as a whole in this case. The author describes techniques for the generation of shapes of aggregates. The orientation averaging is performed by a numerical integration with respect to Euler angles. The numerical aspects of various techniques such as the T-matrix method, discrete dipole approximation, the ?nite di?erence time domain method, e?ective medium theory, and generalized multi-particle Mie so- tion are presented. Recent advances in numerical techniques such as the grouping and adding method and also numerical orientation averaging using a Monte Carlo method are discussed in great depth.
The problem of cosmic ray (CR) geomagnetic effects came to the fore at the beg- ning of the 1930s after the famous expeditions by J. Clay onboard ship (Slamat) between the Netherlands and Java using an ionization chamber. Many CR la- tude expeditions were organized by the famous scientists and Nobel Laureates R. Millikan and A. Compton. From the obtained latitude curves it follows that CRs cannot be gamma rays (as many scientists thought at that time), but must be charged particles. From measurements of azimuthally geomagnetic effect at that time it also followed that these charged particles must be mostly positive (see Chapter 1, and for more details on the history of the problem see monographs of Irina Dorman, M1981, M1989). The ?rst explanations of obtained results were based on the simple dipole - proximation of the geomagnetic ?eld and the theory of energetic charged particles moving in dipole magnetic ?elds, developed in 1907 by C. Stormer ] to explain the aurora phenomenon. Let us note that it was made about 5 years before V. Hess discovered CRs, and received the Nobel Prize in 1936 together with K. Anderson (for the discovery of CR and positrons in CR)."
by K. Lambeck, R. Sabadini and E. B08Chi Viscosity is one of the important material properties of the Earth, controlling tectonic and dynamic processes such as mantle convection, isostasy, and glacial rebound. Yet it remains a poorly resolved parameter and basic questions such as whether the planet's response to loading is linear or non-linear, or what are its depth and lateral variations remain uncertain. Part of the answer to such questions lies in laboratory observations of the rheology of terrestrial materials. But the extrapolation of such measurements from the laboratory environment to the geological environment is a hazardous and vexing undertaking, for neither the time scales nor the strain rates characterizing the geological processes can be reproduced in the laboratory. General rules for this extrapolation are that if deformation is observed in the laboratory at a particular temperature, deformation in geological environments will occur at a much reduced temperature, and that if at laboratory strain rates a particular deformation mechanism dominates over all others, the relative importance of possible mechanisms may be quite different at the geologically encountered strain rates. Hence experimental results are little more than guidelines as to how the Earth may respond to forces on long time scales.
Two main areas of offshore activity are addressed in this book: Site investigation on assessment; and Applications and foundation engineering. The 37 contributions from a wide ranging group of international experts, are resulting from the Offshore Site Investigation and Foundation Behaviour Conference, London, U.K., September 1992. Adequate determination of site conditions can only be achieved by the integrated approach of using geological, geophysical and geotechnical data. Developments in data acquisition techniques are illustrated through case histories in the section on Geotechnical Sampling and Testing. In the section on Advanced Interpretation Techniques and Integrated Interpretations the state of the art of these topics is also illustrated by case histories. A review of foundation behaviour is presented in the section on Gravity Foundations, Foundation Performance Monitoring, Piling Research and Design Criteria. These topics are illustrated in the light of field experience and recent research, in particular that involving full-scale tests and monitoring. This book provides many illustrative figures and much pertinent information to exploration and marine geophysicists, petroleum and offshore engineers and for researchers working these fields.
This book deals with how to measure innovation in crisis management, drawing on data, case studies, and lessons learnt from different European countries. The aim of this book is to tackle innovation in crisis management through lessons learnt and experiences gained from the implementation of mixed methods through a practitioner-driven approach in a large-scale demonstration project (DRIVER+). It explores innovation from the perspective of the end-users by focusing on the needs and problems they are trying to address through a tool (be it an app, a drone, or a training program) and takes a deep dive into what is needed to understand if and to what extent the tool they have in mind can really bring innovation. This book is a toolkit for readers interested in understanding what needs to be in place to measure innovation: it provides the know-how through examples and best practices. The book will be a valuable source of knowledge for scientists, practitioners, researchers, and postgraduate students studying safety, crisis management, and innovation.
For many years, digital signal processing has been governed by the theory of Fourier transform and its numerical implementation. The main disadvantage of Fourier theory is the underlying assumption that the signals have time-wise or space-wise invariant statistical properties. In many applications the deviation from a stationary behavior is precisely the information to be extracted from the signals. Wavelets were developed to serve the purpose of analysing such instationary signals. The book gives an introduction to wavelet theory both in the continuous and the discrete case. After developing the theoretical fundament, typical examples of wavelet analysis in the Geosciences are presented. The book has developed from a graduate course held at The University of Calgary and is directed to graduate students who are interested in digital signal processing. The reader is assumed to have a mathematical background on the graduate level.
Earth 's magnetic field is currently changing dramatically. Is the observed decrease of the dipole moment indicating a future polarity transition? What would be the effects of such a drastic change on system Earth? Can any positive or negative effects on our biosphere or even humans be expected? This book gives a first overview about the geomagnetic field in general and serves as an introduction into geomagnetism. As the topic of the book covers a wide range of scientific disciplines, the first chapter summarises basic principles of geomagnetism and related fields including a historic overview, instruments and measurements, paleomagnetic fields, basics of dynamo theory, etc. The contributed chapters review major results of international activities aiming at understanding the causes and effects of geomagnetic field variations in view of the questions above.
Millions of lives and business have either been lost or significantly impacted by COVID-19. Yet, many are warning that climate change will be much more devastating over the coming decades. Reality is starting to set in. We are not going to achieve our global mitigation targets; we probably won’t even come close. Individuals faced with this reality react differently, from willful ignorance to anxiety and depression, all normal reactions. If you believe in science and understand the likelihood of our failure to meet our targets, you need to accept and plan for an unknown, challenging future. We may be individually powerless to stop climate change, but we certainly can act in ways that will help us better face the consequences. This book provides a structured approach to plan and prepare today for a world rocked by a turbulent climate.
This book includes extended versions of original works on aerospace robotics presented at the Conference on Aerospace Robotics (CARO) in Warsaw. It presents recent advances in aerospace robotics, such as manipulators, which are widely used in space for orbital operations, for example, the Mobile Servicing System on the International Space Station and the Shuttle Remote Manipulator System. Such manipulators are operated by astronauts and mounted on large platforms, making the influence of manipulator motion on the state of the platform insignificant. Application of manipulators for capture maneuvers in unmanned On-Orbit Servicing or Active Debris Removal missions requires reliable control algorithms that take into account the free-floating nature of the manipulator-equipped spacecraft. As such the book presents possibilities for using space manipulators for exploration and a variety of space operations. Further, it discusses new methods for the control of autonomous unmanned aerial vehicles (UAV) using vision systems and sensor fusion methodologies. Such autonomous flying vehicles could be used for materials deliveries and emergencies, as well as surveying and servicing.
This book sheds valuable new light on the genetic mineralogy of lower-mantle diamonds and syngenetic minerals. It presents groundbreaking experimental results revealing the melting relations of ultrabasic and basic associations and a physicochemical peritectic mechanism of their evolution. The experimental investigations included here reveal the key multicomponent, multiphase oxide-silicate-carbonate-carbon parental media for lower-mantle diamonds and syngenetic minerals. Consequently, readers will find extensive information on the diamond-parental oxide-silicate-carbonate-carbon melts-solutions that supplement the general features of lower-mantle diamond genesis and the most efficient ultrabasic-basic evolution. The experimental results on physicochemical aspects, combined with analytical mineralogy data, make it possible to create a generalized composition diagram of the diamond-parental melts-solutions, there by completing the mantle-carbonatite concept for the genesis of lower-mantle diamonds and syngenetic minerals. This book addresses the needs of all researchers studying the Earth's deepest structure, super-deep mineral formation including diamonds, and magmatic evolution.
In 2002 the multidisciplinary research project "Nasca: development and adaptation of archaeometric techniques for the investigation of cultural history" (Nasca: Entwicklung und Adaption archa..ometrischer Techniken zur Erforschung der Kulturgeschichte) started, funded by the German Federal Ministry of Education andResearch(Bundesministerium fu..r Bildung und Forschung, BMBF ) in its priority program "New scientific methods and technologies for the humanities" (Neue Naturwissenschaftliche Methoden und Technologien fu..r die Geisteswissenschaften, NTG). This new project continued and in a certain way fulfilled a lasting goal of the ministry to integrate different branches of scientific activities and to foster the transfer of expertise gained in natural sciences to the humanities and vice versa. Archaeometry, by definition the application of scientific methods in archaeological investigation, has been a major focus of the priority program since its beginnings in 1989. After funding numerous fruitful research projects that developed new archaeometric techniques mostly in bilateral cooperation, an even greater outcome was expected from a more multifaceted approach with the participation of various scientific disciplines around a well-defined, archaeological research topic. Furthermore, it was intended to establish a project outside the traditional research areas in central Europe or the Mediterranean. It was the great merit of the person formerly in charge of the BMBF priority program, Dr. Edgar Pusch, to develop these far-reaching perspectives and we are extremely grateful that after a rigorous screening our project among other interesting ones was selected for funding.
Gas hydrates are ice-like crystalline substances that form a rigid cage of water molecules and entrap hydrocarbon and non-hydrocarbon gas by hydrogen bonding. Natural gas hydrate is primarily composed of water and methane. These are solid, crystalline, ice-like substances found in permafrost areas and deepwater basins around the world. They naturally occur in the pore space of marine sediments, where appropriate high pressure and low temperature conditions exist in an adequate supply of gas (mainly methane). Gas hydrates are considered as a potential non conventional energy resource. Methane hydrates are also recognized as, an influence on offshore platform stability, a major factor in climate change contributing to global warming and a significant contribution to the ocean carbon cycle. The proposed book treats various geophysical techniques in order to quantify the gas hydrate reserves and their impact on environment. The primary goal of this book is to provide the state of art for gas hydrate exploration. The target audiences for this book are non-specialist from different branches of science, graduate students and researchers.
This book presents review papers and research articles focusing on the 2008 Wenchuan earthquake in Sichuan, China, discussing cross-disciplinary and multiple thematic aspects of modern seismological, geophysical, geological and stochastic methodology and technology. Resulting from international and regional earthquake research and disaster mitigation collaborations, and written by international authors from multiple institutions and disciplines, it describes methods and techniques in earthquake science based on investigations of the Wenchuan earthquake. It also includes extensive reference lists to aid further research. The book helps both senior researchers and graduate students in earthquake science to broaden their horizons in data analysis, numerical modeling and structural retrieval for the tectonic, geological, geophysical and mechanical interpretation of the 2008 M8 Wenchuan earthquake to support a global and regional cooperation for preparedness, and the mitigation and management of seismic risk.
TECTONlCS AND PHYSICS Geology, although rooted in the laws of physics, rarely has been taught in a manner designed to stress the relations between the laws and theorems of physics and the postulates of geology. The same is true of geophysics, whose specialties (seismology, gravimetIy, magnetics, magnetotellurics) deal only with the laws that govern them, and not with those that govern geology's postulates. The branch of geology and geophysics called tectonophysics is not a formalized discipline or subdiscipline, and, therefore, has no formal laws or theorems of its own. Although many recent books claim to be textbooks in tectonophysics, they are not; they are books designed to explain one hypothesis, just as the present book is designed to explain one hypothesis. The textbook that comes closest to being a textbook of tectonophysics is Peter 1. Wyllie's (1971) book, The Dynamic Earth. Teachers, students, and practitioners of geology since the very beginning of earth science teaching have avoided the development of a rigorous (but not rigid) scientific approach to tectonics, largely because we earth scientists have not fully understood the origin of the features with which we are dealing. This fact is not at all surprising when one considers that the database for hypotheses and theories of tectonics, particularly before 1960, has been limited to a small part of the exposed land area on the Earth's surface."
This is the first book to cover actinide nano research. It is of interest both for fundamental research into the chemistry and physics of f-block elements as well as for applied researchers such as those studying the long-term safety of nuclear waste disposal and developing remediation strategies. The authors cover important issues of the formation of actinide nano-particles, their properties and structure, environmental behavior of colloids and nanoparticles related to the safe disposal of nuclear wastes, modeling and advanced methods of characterization at the nano-scale.
This book presents an overview of volcanic debris avalanche deposits, which are produced by partial volcanic edifice collapse, a catastrophic natural phenomenon. It has been 40 years since the volcanic debris avalanche associated with the 1980 eruption of Mount St. Helens, and our understanding of these events has grown considerably in the interim. Drawing on these advances, the book addresses all aspects of volcanic debris avalanches. Though previously overlooked in field-based geological and volcanological studies, these deposits are now known to be associated with most volcanoes and volcanic areas around the world. The book presents state-of-the-art ideas on the triggering and emplacement mechanisms of these events, supported by field and analogue studies, as well as new simulations tools and models used to determine their physical characteristic and hazards.
Seismic waves - generated both by natural earthquakes and by man-made sources - have produced an enormous amount of information about the Earth's interior. In classical seismology, the Earth is modeled as a sequence of uniform horizontal layers (or spherical shells) having different elastic properties and one determines these properties from travel times and dispersion of seismic waves. The Earth, however, is not made of horizontally uniform layers, and classic seismic methods can take large-scale inhomogeneities into account. Smaller-scale irregularities, on the other hand, require other methods. Observations of continuous wave trains that follow classic direct S waves, known as coda waves, have shown that there are heterogeneities of random size scattered randomly throughout the layers of the classic seismic model. This book focuses on recent developments in the area of seismic wave propagation and scattering through the randomly heterogeneous structure of the Earth, with emphasis on the lithosphere. The presentation combines information from many sources to present a coherent introduction to the theory of scattering in acoustic and elastic materials and includes analyses of observations using the theoretical methods developed. The second edition especially includes new observational facts such as the spatial variation of medium inhomogeneities and the temporal change in scattering characteristics and recent theoretical developments in the envelope synthesis in random media for the last ten years. Mathematics is thoroughly rewritten for improving the readability. Written for advanced undergraduates or beginning graduate students of geophysics or planetary sciences, this book should also be of interest to civil engineers, seismologists, acoustical engineers, and others interested in wave propagation through inhomogeneous elastic media.
This book offers an in-depth study of two well-known models of "avalanche" dynamics, modified minimally by the inclusion of relaxation. Many complex systems respond to continuous inputs of energy by accumulation of stress over time, interrupted by sudden energy releases called avalanches. The first model studied is the viscoelastic interface driven over disorder, which is shown to display the fundamental features of friction. In the mean-field limit, the friction force derived semi-analytically is compatible with laboratory experiments (displaying both velocity weakening and contact aging). In two dimensions, large-scale numerical simulations are in good agreement with the basic features of real earthquakes (Gutenberg-Richter Law, aftershock migration). The second model is a non-Markovian variant of Directed Percolation, in which we observe that the universality class is only partly modified by relaxation, a promising finding with respect to our first model.
Der bekannte Astronom Karl Schwarzschild (1873-1916) gilt als der Begr}nder der Astrophysik und als hervorragender Forscher mit einer erstaunlichen Bandbreite seiner Interessen. Arbeiten zur Himmelsmechanik, Elektrodynamik und Relativit{tstheorie weisen ihn als vorz}glichen Mathematiker und Physiker seiner Zeit aus. Untersuchungen zur Photographischen Photometrie, Optik und Spektroskopie zeigen den versierten Beobachter, der sein Me instrument beherrscht. Schlie lich arbeitete Schwarzschild als Astrophysiker und an Sternatmosph{ren, Kometen, Struktur und Dynamikvon Sternsystemen. Die in seinem kurzen Leben entstandene F}lle von wissenschafltichen Arbeiten ist in drei B{nden der Gesamtausgabe gesammelt, erg{nzt durch biographisches Material und ein Essay des Nobelpreistr{gers S. Chandrasekhar und Annotationen von Fachleuten in jedem der drei B{nde.
This collection of papers will address the question "What is the Magnetospheric Cusp?" and what is its role in the coupling of the solar wind to the magnetosphere as well as its role in the processes of particle transport and energization within the magnetosphere. The cusps have traditionally been described as narrow funnel-shaped regions that provide a focus of the Chapman-Ferraro currents that flow on the magnetopause, a boundary between the cavity dominated by the geomagnetic field (i.e., the magnetosphere) and the external region of the interplanetary medium. Measurements from a number of recent satellite programs have shown that the cusp is not confined to a narrow region near local noon but appears to encompass a large portion of the dayside high-latitude magnetosphere. It appears that the cusp is a major source region for the production of energetic charged particles for the magnetosphere. This book will be of great interest to scientists in Space Physics as well as to those working in research organizations in governments and industries, university departments of physics, astronomy, space physics, and geophysics. Part of this book has already been published in a journal. |
![]() ![]() You may like...
Geophysics and Ocean Waves Studies
Khalid S. Essa, Marcello Di Risio, …
Hardcover
R3,507
Discovery Miles 35 070
Exact Solutions in Classical Field…
Nicolas Boulanger, Andrea Campoleoni
Hardcover
R1,025
Discovery Miles 10 250
Essential Fluid Dynamics for Scientists
Jonathan Braithwaite
Hardcover
R3,240
Discovery Miles 32 400
Geophysical Exploration of the Solar…
Cedric Schmelzbach, Simon Christian Stahler
Hardcover
R6,236
Discovery Miles 62 360
Fluid Mechanics of Planets and Stars
Michael Le Bars, Daniel Lecoanet
Hardcover
R3,040
Discovery Miles 30 400
|