![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Geophysics
Coastal Wetlands, Second Edition: An Integrated and Ecosystem Approach provides an understanding of the functioning of coastal ecosystems and the ecological services that they provide. As coastal wetlands are under a great deal of pressure from the dual forces of rising sea levels and the intervention of human populations, both along the estuary and in the river catchment, this book covers important issues, such as the destruction or degradation of wetlands from land reclamation and infrastructures, impacts from the discharge of pollutants, changes in river flows and sediment supplies, land clearing, and dam operations.
Primitive Meteorites and Asteroids: Physical, Chemical, and Spectroscopic Observations Paving the Way to Exploration covers the physical, chemical and spectroscopic aspects of asteroids, providing important data and research on carbonaceous chondrites and primitive meteorites. This information is crucial to the success of missions to parent bodies, thus contributing to an understanding of the early solar system. The book offers an interdisciplinary perspective relevant to many fields of planetary science, as well as cosmochemistry, planetary astronomy, astrobiology, geology and space engineering. Including contributions from planetary and missions scientists worldwide, the book collects the fundamental knowledge and cutting-edge research on carbonaceous chondrites and their parent bodies into one accessible resource, thus contributing to the future of space exploration.
Magmas under Pressure: Advances in High-Pressure Experiments on Structure and Properties of Melts summarizes recent advances in experimental technologies for studying magmas at high pressures. In the past decade, new developments in high-pressure experiments, particularly with synchrotron X-ray techniques, have advanced the study of magmas under pressure. These new experiments have revealed significant changes of structure and physical properties of magmas under pressure, which significantly improves our understanding of the behavior of magmas in the earth's interior. This book is an important reference, not only in the earth and planetary sciences, but also in other scientific fields, such as physics, chemistry, material sciences, engineering and in industrial applications, such as glass formation and metallurgical processing.
This book is a concise introduction to the interactions between earthquakes and human-built structures (buildings, dams, bridges, power plants, pipelines and more). It focuses on the ways in which these interactions illustrate the application of basic physics principles and concepts, including inertia, force, shear, energy, acceleration, elasticity, friction and stability. It illustrates how conceptual and quantitative physics emerges in the day-to-day work of engineers, drawing from examples from regions and events which have experienced very violent earthquakes with massive loss of life and property. The authors of this book, a physics educator, a math educator, and a geotechnical engineer have set off on what might be considered a mining expedition; searching for ways in which introductory physics topics and methods can be better connected with careers of interest to non-physics majors. They selected ""destructive earthquakes"" as a place to begin because they are interesting and because future engineers represent a significant portion of the non-physics majors in introductory physics courses. Avoiding the extremes of treating applied physics either as a purely hands-on, conceptual experience or as a lengthy capstone project for learners who have become masters; the application in this book can be scattered throughout a broader physics course or individual learning experience.
Theory of Electromagnetic Well Logging provides a much-needed and complete analytical method for electromagnetic well logging technology. The book presents the physics and mathematics behind the effective measurement of rock properties using boreholes, allowing geophysicists, petrophysisists, geologists and engineers to interpret them in a more rigorous way. Starting with the fundamental concepts, the book then moves on to the more classic subject of wireline induction logging, before exploring the subject of LWD logging, concluding with new thoughts on electromagnetic telemetry. Theory of Electromagnetic Well Logging is the only book offering an in-depth discussion of the analytical and numerical techniques needed for expert use of those new logging techniques.
Archaeological Geophysics for Ephemeral Human Occupations: Focusing on the Small-Scale combines technological advances in near-surface geophysics with recent archaeological scholarship and underlying archaeological premises to provide a practical manual for guiding archaeo-geophysical research design. By proposing the amelioration of communication gaps between traditional and geophysical archaeologists, this book will foment dialogue and participate in bringing about new ways of thinking anthropologically about archaeological geophysics, especially in relation to prehistoric open-air ephemeral sites. Offering a way to begin a dialogue between archaeology and geophysics, Archaeological Geophysics for Ephemeral Human Occupations is an important reference for practicing professionals, instructors, and students in geophysics and anthropology/archaeology, as well as geology.
This title covers the physical and mathematical principles of electric methods in applied geophysics.
Geological Controls for Gas Hydrate Formations and Unconventionals tells the story of unconventional hydrocarbon resources, especially gas hydrates, tight gas, shale gas, liquid- rich shale, and shale oil, to future generations. It presents the most current research in unconventionals, covering structural constituents of continental margins and their role in generating hydrocarbons. Additionally, this book answers basic questions regarding quantifications and characterizations, distributions, modes of occurrence, physical and chemical properties, and more - in essence, all the information that is necessary to improve the models for precision prediction of the enigma of gas hydrates and other unconventionals. Blending geology, geophysics, geomechanics, petrophysics, and reservoir engineering, it explains in simple language the scientific concepts that are necessary to develop geological and reservoir models for unconventionals. Serving as a focal point for geoscientists and engineers conducting research that focuses on reservoir characteristics of unconventionals, Geological Controls for Gas Hydrate Formations and Unconventionals is a useful resource for a variety of other specialiststies including physicists, geochemists, exploration geologists, and petroleum and reservoir engineers. It details the key factors for successful exploration and development of unconventional reservoirs including discovery, data evaluation, full-field development, production, and abandonment, along with a vivid description ofn the worldwide occurrence of unconventional hydrocarbons.
Fluvial-Tidal Sedimentology provides information on the 'Tidal-Fluvial Transition', the transition zone between river and tidal environments, and includes contributions that address some of the most fundamental research questions, including how the morphology of the tidal-fluvial transition zone evolves over short (days) and long (decadal) time periods and for different tidal and fluvial regimes, the structure of the river flow as it varies in its magnitude over tidal currents and how this changes at the mixing interface between fresh and saline water and at the turbidity maximum, the role of suspended sediment in controlling bathymetric change and bar growth and the role of fine-grained sediment (muds and flocs), whether it is possible to differentiate between 'fluvial' and 'tidally' influenced bedforms as preserved in bars and within the adjacent floodplain and what are the diagnostic sedimentary facies of tidal-fluvial deposits and how are these different from 'pure' fluvial and tidal deposits, amongst other topics. The book presents the latest research on the processes and deposits of the tidal-fluvial transition, documenting recent major field programs that have quantified the flow, sediment transport, and bed morphology in tidal-fluvial zones. It uses description of contemporary environments and ancient outcrop analogues to characterize the facies change through the tidal-fluvial transition.
The critically acclaimed serialized review journal for over 50 years, Advances in Geophysics is a highly respected publication in the field of geophysics. Since 1952, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now in its 56th volume, it contains much material still relevant today--truly an essential publication for researchers in all fields of geophysics.
"Geophysics for Petroleum Engineers" focuses on the applications of geophysics in addressing petroleum engineering problems. It explores the complementary features of geophysical techniques in better understanding, characterizing, producing and monitoring reservoirs. This book introduces engineers to geophysical methods so that
they can communicate with geophysicist colleagues and appreciate
the benefits of their work. These chapters describe fundamentals of
geophysical techniques, their physical bases, their applications
and limitations, as well as possible pitfalls in their misuse. Case
study examples illustrate the integration of geophysical data with
various other data types for predicting and describing reservoir
rocks and fluid properties. The examples come from all over the
world, with several case histories from the fields in the Middle
East.
The diverse planetary environments in the solar system react in somewhat different ways to the encompassing influence of the Sun. These different interactions define the electrostatic phenomena that take place on and near planetary surfaces. The desire to understand the electrostatic environments of planetary surfaces goes beyond scientific inquiry. These environments have enormous implications for both human and robotic exploration of the solar system. This book describes in some detail what is known about the electrostatic environment of the solar system from early and current experiments on Earth as well as what is being learned from the instrumentation on the space exploration missions (NASA, European Space Agency, and the Japanese Space Agency) of the last few decades. It begins with a brief review of the basic principles of electrostatics.
The book is an introduction to the subject of fluid mechanics, essential for students and researchers in many branches of science. It illustrates its fundamental principles with a variety of examples drawn mainly from astrophysics and geophysics as well as from everyday experience. Prior familiarity with basic thermodynamics and vector calculus is assumed.
Active geophysical monitoring is an important new method for studying time-evolving structures and states in the tectonically active Earth's lithosphere. It is based on repeated time-lapse observations and interpretation of rock-induced changes in geophysical fields periodically excited by controlled sources. In this book, the results of strategic systematic development and the application of new technologies for active geophysical monitoring are presented. The authors demonstrate that active monitoring may drastically change solid Earth geophysics, through the acquisition of substantially new information, based on high accuracy and real-time observations. Active monitoring also provides new means for disaster mitigation, in conjunction with substantial international and interdisciplinary cooperation.
In this book we will look at what planetary nebulae are, where they come from and where they go. We will discuss what mechanisms cause these beautiful markers of stellar demise as well as what causes them to form their variety of shapes. How we measure various aspects of planetary nebulae such as what they are made of will also be explored. Though we will give some aspects of planetary nebulae mathematical treatment, the main points should be accessible to people with only a limited background in mathematics. A short glossary of some of the more arcane astronomical terms is at the end of the book to help in understanding. Included at the end of each chapter is an extensive bibliography to the peer reviewed research on these objects and I would encourage the reader interested in an even deeper understanding to read these articles.
The Lunar Reconnaissance Orbiter (LRO) was successfully launched on June 18, 2009 and joined an international eet of satellites (Japan's SELENE/Kaguya, China's Chang'E, and India's Chandrayaan-1) that have recently orbited the Moon for scienti c exploration p- poses. LRO is the rst step to ful ll the US national space goal to return humans to the Moon's surface, which is a primary objective of NASA's Exploration Systems Mission - rectorate (ESMD). TheinitialLROmissionphasehasaone-yeardurationfullyfundedunder ESMD support. LRO is expected to have an extended phase of operations for at least two additional years to undertake further lunar science measurements that are directly linked to objectives outlined in the National Academy of Science's report on the Scienti c Context for Exploration of the Moon (SCEM). All data from LRO will be deposited in the Planetary Data System (PDS) archive so as to be usable for both exploration and science by the widest possible community. A NASA Announcement of Opportunity (AO) solicited proposals for LRO instruments with associated exploration measurement investigations. A rigorous evaluation process - volving scienti c peer review, in combination with technical, cost and management risk assessments, recommended six instruments for LRO development and deployment. The competitively selected instruments are: Cosmic Ray Telescope for the Effects of Rad- tion (CRaTER), Diviner Lunar Radiometer Experiment (DLRE), Lyman-Alpha Mapping Project (LAMP), Lunar Exploration Neutron Detector (LEND), Lunar Orbiter Laser - timeter (LOLA), and Lunar Reconnaissance Orbiter Camera (LROC).
Magnetic methods are widely used in exploration, engineering,
borehole and global geophysics, and the subjects of this book are
the physical and mathematical principles of these methods
regardless of the area of application.
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 138.Subduction zones helped nucleate and grow the continents, they fertilize and lubricate the earth's interior, they are the site of most subaerial volcanism and many major earthquakes, and they yield a large fraction of the earth's precious metals. They are obvious targets for study--almost anything you learn is likely to impact important problems--yet arriving at a general understanding is notoriously difficult: Each subduction zone is distinct, differing in some important aspect from other subduction zones; fundamental aspects of their mechanics and igneous processes differ from those in other, relatively well-understood parts of the earth; and there are few direct samples of some of their most important metamorphic and metasomatic processes. As a result, even first-order features of subduction zones have generated conflict and apparent paradox. A central question about convergent margins, for instance--how vigorous magmatism can occur where plates sink and the mantle cools--has a host of mutually inconsistent answers: Early suggestions that magmatism resulted from melting subducted crust have been emphatically disproved and recently just as emphatically revived; the idea that melting is fluxed by fluid released from subducted crust is widely held but cannot explain the temperatures and volatile contents of many arc magmas; generations of kinematic and dynamic models have told us the mantle sinks at convergent margins, yet strong evidence suggests that melting there is often driven by upwelling. In contrast, our understanding ofwhy volcanoes appear at ocean ridges and "hotspots"--although still presenting their own chestnuts--are fundamentally solved problems.
This book includes the proceedings of the conference "Problems of the Geocosmos" held by the Earth Physics Department, St. Petersburg State University, Russia, every two years since 1996. Covering a broad range of topics in solid Earth physics and solar-terrestrial physics, as well as more applied subjects such as engineering geology and ecology, the book reviews the latest research in planetary geophysics, focusing on the interaction between the Earth's shells and the near-Earth space in a unified system. This book is divided into four sections: * Exploration and Environmental Geophysics (EG), which covers two broad areas of environmental and engineering geophysics - near-surface research and deep geoelectric studies; * Paleomagnetism and Rock Magnetism (P), which includes research on magnetostratigraphy, paleomagnetism applied to tectonics, environmental magnetism, and marine magnetic anomalies; * Seismology (S), which covers the theory of seismic wave propagation, Earth's structure from seismic data, global and regional seismicity and sources of earthquakes, and novel seismic instruments and data processing methods; and * Physics of Solar-Terrestrial Connections (STP), which includes magnetospheric phenomena, space weather, and the interrelationship between solar activity and climate.
Here's the ideal tool if you're looking for a flexible,
straightforward analysis system for your everyday design and
operations decisions. This new third edition includes sections on
stations, geographical information systems, "absolute" versus
"relative" risks, and the latest regulatory developments. From
design to day-to-day operations and maintenance, this unique volume
covers every facet of pipeline risk management, arguably the most
important, definitely the most hotly debated, aspect of pipelining
today.
This book examines the origins and dynamical characteristics of atmospheric inertia-gravity waves in the Antarctic mesosphere. Gravity waves are relatively small-scale atmospheric waves with a restoring force of buoyancy that can transport momentum upward from the troposphere to the middle atmosphere. In previous studies, the dynamical characteristics of mesospheric gravity waves have not been fully examined using numerical simulations, since performing a numerical simulation with a high resolution and a high model-top requires considerable computational power. However, recent advances in computational capabilities have allowed us to perform numerical simulations using atmospheric general circulation models, which cover the troposphere to the mesosphere with a sufficiently fine horizontal resolution to resolve small-scale gravity waves. The book first describes the simulation of mesospheric gravity waves using a high-resolution non-hydrostatic atmospheric model with a high model top. The accuracy of the numerical results was confirmed by the first Mesosphere-Stratosphere-Troposphere/Incoherent Scattering (MST/IS) radar observation in the Antarctic. It also depicts the origins and propagation processes of mesospheric gravity waves on the basis of the results of the high-resolution numerical model. The behaviors of mesospheric gravity waves can be clearly explained using both fundamental and cutting-edge theories of fluid dynamics |
You may like...
Progress in Industrial Mathematics at…
Peregrina Quintela, Patricia Barral, …
Hardcover
R5,308
Discovery Miles 53 080
Humanistic Approaches to Medical…
Beatrice Gabriela Ioan, Magdalena Iorga
Hardcover
Power Electronics Device Applications of…
Satoshi Koizumi, Hitoshi Umezawa, …
Paperback
Intelligent Networked Teleoperation…
Zhijun Li, Yuanqing Xia, …
Hardcover
Smart Sensors and MEMS - Intelligent…
S. Nihtianov, A. Luque
Paperback
Neural Networks and Fuzzy Logic
Naga Bhaskar, G Vijay Kumar
Hardcover
|