![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Civil engineering, surveying & building > Highway & traffic engineering
This proceedings book gathers selected papers presented at the 16th Scientific and Technical Conference "Transport Systems. Theory and Practice", organised by the Department of Transport Systems and Traffic Engineering at the Faculty of Transport of the Silesian University of Technology. The conference was held on 16-18 September 2019 in Katowice (Poland). More details at www.TSTP.polsl.pl Which of the multi-criteria methods should be applied to support decision-making processes while tackling problems of sustainable transport solutions? How can individual issues encountered when implementing smart solutions in transport systems be solved? What advanced tools can be used to assess the current condition of selected elements of transport systems (both in terms of transport infrastructure and traffic streams)? What data concerning transport processes can be collected automatically and how can we use it? What is the right approach to the problem of the development of the spatial planning of transport systems? This book provides the answers to these and many other questions. It also includes a wealth of numerical analyses based on significant data sets, illustrating the close affiliation between smart transport systems and environment-friendly solutions. The book primarily addresses the needs of three target groups: * Scientists and researchers (ITS field) * Those working for local authorities (responsible for the transport systems at the urban and regional levels) * Representatives of business (traffic strategy management) and industry (manufacturers of ITS components).
This book presents a number of guidelines that are particularly useful in the context of decisions related to system-approach-based modern traffic engineering for the development of transport networks. Including practical examples and describing decision-making support systems it provides valuable insights for those seeking solutions to contemporary transport system problems on a daily basis, such as professional working for local authorities involved in planning urban and regional traffic development strategies as well as representatives of business and industry directly involved in implementing traffic engineering solutions. The guidelines provided enable readers to address problems in a timely manner and simplify the choice of appropriate strategies (including those connected with the relation between pedestrians and vehicle traffic flows, IT development in freight transport, safety issues related to accidents in road tunnels, but also open areas, like roundabouts and crossings). Furthermore, since the book also examines new theoretical-model approaches (including the model of arrival time distribution forming in a dense vehicle flow, the methodological basis of modelling and optimization of transport processes in the interaction of railways and maritime transport, traffic flow surveys and measurements, transport behaviour patterns, human factors in traffic engineering, and road condition modelling), it also appeals to researches and scientists studying these problems. This book features selected papers submitted to and presented at the 16th Scientific and Technical Conference Transport Systems Theory and Practice organized by the Department of Transport Systems and Traffic Engineering at the Faculty of Transport of the Silesian University of Technology. The conference was held on 16-18 September 2019 in Katowice (Poland), more details at www.TSTP.polsl.pl.
Vehicular Ad-Hoc Networks (VANETs) play a key role to develop Intelligent Transportation Systems (ITS) aiming to achieve road safety and to guaranty needs of drivers and passengers, in addition to improve the transportation productivity. One of the most important challenges of this kind of networks is the data routing between VANET nodes which should be routed with high level of Quality of Service (QoS) to ensure receiving messages in the time. Then, the driver can take the appropriate decision to improve the road safety. In the literature, there are several routing protocols for VANETs which are more or less reliable to reach safety requirements. In this book, we start by describing all VANET basic concepts such as VANET definition, VANET versus Mobile ad-Hoc Network (MANET), architectures, routing definition and steps, Quality of Service (QoS) for VANET Routing, Metrics of evaluation, Experimentation, and simulation of VANETs, mobility patterns of VANET etc. Moreover, different routing protocols for routing in VANETs will be described. We propose two main categories to be presented: classical routing and bio-inspired routing. Concerning classical VANET, main principles and all phases will be overviewed, as well as, their two sub-categories which are topological and geographical protocols. After that, we propose a new category called bio-inspired routing which is inspired by natural phenomenon such as Ant colony, Bee life, Genetic operators etc. We present also, some referential protocols as example of each category. In this book, we focus on the idea of how to apply bio-inspired principle into VANET routing to improve road safety, and to ensure QoS of vehicular applications.
Powertrain electrification, fuel decarburization, and energy diversification are techniques that are spreading all over the world, leading to cleaner and more efficient vehicles. Hybrid electric vehicles (HEVs) are considered a promising technology today to address growing air pollution and energy deprivation. To realize these gains and still maintain good performance, it is critical for HEVs to have sophisticated energy management systems. Supervised by such a system, HEVs could operate in different modes, such as full electric mode and power split mode. Hence, researching and constructing advanced energy management strategies (EMSs) is important for HEVs performance. There are a few books about rule- and optimization-based approaches for formulating energy management systems. Most of them concern traditional techniques and their efforts focus on searching for optimal control policies offline. There is still much room to introduce learning-enabled energy management systems founded in artificial intelligence and their real-time evaluation and application. In this book, a series hybrid electric vehicle was considered as the powertrain model, to describe and analyze a reinforcement learning (RL)-enabled intelligent energy management system. The proposed system can not only integrate predictive road information but also achieve online learning and updating. Detailed powertrain modeling, predictive algorithms, and online updating technology are involved, and evaluation and verification of the presented energy management system is conducted and executed.
The next generation of autonomous vehicles will provide major improvements in traffic flow, fuel efficiency, and vehicle safety. Several challenges currently prevent the deployment of autonomous vehicles, one aspect of which is robust and adaptable vehicle control. Designing a controller for autonomous vehicles capable of providing adequate performance in all driving scenarios is challenging due to the highly complex environment and inability to test the system in the wide variety of scenarios which it may encounter after deployment. However, deep learning methods have shown great promise in not only providing excellent performance for complex and non-linear control problems, but also in generalizing previously learned rules to new scenarios. For these reasons, the use of deep neural networks for vehicle control has gained significant interest. In this book, we introduce relevant deep learning techniques, discuss recent algorithms applied to autonomous vehicle control, identify strengths and limitations of available methods, discuss research challenges in the field, and provide insights into the future trends in this rapidly evolving field.
To resolve the urban transportation challenges like congestion, parking, fuel consumption, and pollution, narrow urban vehicles which are small in footprint and light in their gross weight are proposed. Apart from the narrow cabin design, these vehicles are featured by their active tilting system, which automatically tilts the cabin like a motorcycle during the cornering for comfort and safety improvements. Such vehicles have been manufactured and utilized in city commuter programs. However, there is no book that systematically discusses the mechanism, dynamics, and control of narrow tilting vehicles (NTVs). In this book, motivations for building NTVs and various tilting mechanisms designs are reviewed, followed by the study of their dynamics. Finally, control algorithms designed to fully utilize the potential of tilting mechanisms in narrow vehicles are discussed. Special attention is paid to an efficient use of the control energy for rollover mitigation, which greatly enhance the stability of NTVs with optimized operational costs.
The safety case (SC) is one of the railway industry's most important deliverables for creating confidence in their systems. This is the first book on how to write an SC, based on the standard EN 50129:2003. Experience has shown that preparing and understanding an SC is difficult and time consuming, and as such the book provides insights that enhance the training for writing an SC. The book discusses both "regular" safety cases and agile safety cases, which avoid too much documentation, improve communication between the stakeholders, allow quicker approval of the system, and which are important in the light of rapidly changing technology. In addition, it discusses the necessity of frequently updating software due to market requirements, changes in requirements and increased cyber-security threats. After a general introduction to SCs and agile thinking in chapter 1, chapter 2 describes the majority of the roles that are relevant when developing railway-signaling systems. Next, chapter 3 provides information related to the assessment of signaling systems, to certifications based on IEC 61508 and to the authorization of signaling systems. Chapter 4 then explains how an agile safety plan satisfying the requirements given in EN 50126-1:1999 can be developed, while chapter 5 provides a brief introduction to safety case patterns and notations. Lastly, chapter 6 combines all this and describes how an (agile) SC can be developed and what it should include. To ensure that infrastructure managers, suppliers, consultants and others can take full advantage of the agile mind-set, the book includes concrete examples and presents relevant agile practices. Although the scope of the book is limited to signaling systems, the basic foundations for (agile) SCs are clearly described so that they can also be applied in other cases.
Focused on the logistics and transportation operations within a supply chain, this book brings together the latest models, algorithms, and optimization possibilities. Logistics and transportation problems are examined within a sustainability perspective to offer a comprehensive assessment of environmental, social, ethical, and economic performance measures. Featured models, techniques, and algorithms may be used to construct policies on alternative transportation modes and technologies, green logistics, and incentives by the incorporation of environmental, economic, and social measures. Researchers, professionals, and graduate students in urban regional planning, logistics, transport systems, optimization, supply chain management, business administration, information science, mathematics, and industrial and systems engineering will find the real life and interdisciplinary issues presented in this book informative and useful.
Vehicle rollover accidents have been a serious safety problem for the last three decades. Although rollovers are a small percentage of all traffic accidents, they do account for a large proportion of severe and fatal injuries. Specifically, some large passenger vehicles, such as large vans, pickup trucks, and sport utility vehicles, are more prone to rollover accidents with a high center of gravity (CG) and narrow track width. Vehicle rollover accidents may be grouped into two categories: tripped and untripped rollovers. A tripped rollover commonly occurs when a vehicle skids and digs its tires into soft soil or hits a tripping mechanism such as a curb with a sufficiently large lateral velocity. On the other hand, the untripped rollover is induced by extreme maneuvers during critical driving situations, such as excessive speed during cornering, obstacle avoidance, and severe lane change maneuver. In these situations, the forces at the tire-road contact point are large enough to cause the vehicle to roll over. Furthermore, vehicle rollover may occur due to external disturbances such as side-wind and steering excitation. Therefore, it is necessary to investigate the dynamic stability and control of tripped and untripped vehicle rollover so as to avoid vehicle rollover accidents. In this book, different dynamic models are used to describe the vehicle rollover under both untripped and special tripped situations. From the vehicle dynamics theory, rollover indices are deduced, and the dynamic stabilities of vehicle rollover are analyzed. In addition, some active control strategies are discussed to improve the anti-rollover performance of the vehicle.
Robotic Sailing 2017. This book contains the peer-reviewed papers presented at the 10th International Robotic Sailing Conference which was organized in conjunction with the 10th World Robotic Sailing Championship held in Horten, Norway the 4th-9th of September 2017. The seven papers cover topics of interest for autonomous robotic sailing which represents some of the most challenging research and development areas. The book is divided into two parts. The first part contains papers which focus on the design of sails and software for the assessment and predication of sailboat performance as well as software platforms and middleware for sailboat competition and research. The second part includes algorithms and strategies for navigation and collision avoidance on local, mid- and long range. The differences in approach in the included papers show that robotic sailing is still an emerging cross-disciplinary science. The multitude of suggestions to the specific problems of prediction and simulation of sailboats as well as the challenges of route planning, anti-grounding and collision avoidance are good indicators of science in its infancy. Hence, we may expect the future to hold great advances for robotic sailing.
This book illustrates a new quantitative risk analysis model for road tunnels that is capable of evaluating the role of infrastructure measures, equipment and management procedures as prescribed by EU Directive 2004/54/EC. The risk assessment draws on the typical F-N curves of societal risk, evaluated with the help of event tree analysis, vehicle queue formation dynamics, and users' egress and tenability models. In addition, the model considers the reliability of the safety measures. The work provides essential guidance on the following aspects: how a quantitative model can be implemented to evaluate risk in road tunnels; how to build an event tree for the accident scenarios considered; how to simulate the vehicle queue formation; how to simulate the evolution of accident scenarios; and how to simulate the users' egress. Given its scope and depth of coverage, the book will be of interest to all engineers whose work involves fire protection and safety in tunnels, all persons engaged in safety and transport engineering or risk analysis for road tunnels, as well as public and private bodies involved in the application of Directive 2004/54/EC.
This monograph presents a simple, innovative approach for the measurement and short-term prediction of highway travel times based on the fusion of inductive loop detector and toll ticket data. The methodology is generic and not technologically captive, allowing it to be easily generalized for other equivalent types of data. The book shows how Bayesian analysis can be used to obtain fused estimates that are more reliable than the original inputs, overcoming some of the drawbacks of travel-time estimations based on unique data sources. The developed methodology adds value and obtains the maximum (in terms of travel time estimation) from the available data, without recurrent and costly requirements for additional data. The application of the algorithms to empirical testing in the AP-7 toll highway in Barcelona proves that it is possible to develop an accurate real-time, travel-time information system on closed-toll highways with the existing surveillance equipment, suggesting that highway operators might provide their customers with such an added value with little additional investment in technology.
This book reports on cutting-edge theories and methods for analyzing complex systems, such as transportation and communication networks and discusses multi-disciplinary approaches to dependability problems encountered when dealing with complex systems in practice. The book presents the most noteworthy methods and results discussed at the International Conference on Reliability and Statistics in Transportation and Communication (RelStat), which took place in Riga, Latvia on October 17 - 20, 2018. It spans a broad spectrum of topics, from mathematical models and design methodologies, to software engineering, data security and financial issues, as well as practical problems in technical systems, such as transportation and telecommunications, and in engineering education.
Transport systems are facing an impossible dilemma: satisfy an increasing demand for mobility of people and goods, while decreasing their fossil-energy requirements and preserving the environment. Additionally, transport has an opportunity to evolve in a changing world, with new services, technologies but also new requirements (fast delivery, reliability, improved accessibility). The subject of traffic is organized into two separate but complementary volumes: Volume 3 on Traffic Management and Volume 4 on Traffic Safety. Traffic Safety, Volume 4 of the Research for Innovative Transports Set, presents a collection of updated papers from the TRA 2014 Conference, highlighting the diversity of research in this field. Theoretical chapters and practical case studies address topics such as road safety management and policies, accident analysis and modeling, vulnerable road users' safety, road infrastructure safety, ITS and railway safety.
This book includes keynote presentations, invited speeches, and general session papers presented at the 7th International Symposium on Environmental Vibration and Transportation Geodynamics (formerly the International Symposium on Environmental Vibration), held from October 28 to 30, 2016 at Zhejiang University, Hangzhou, China. It discusses topics such as the dynamic and cyclic behaviors of soils, dynamic interaction of vehicle and transportation infrastructure; traffic-induced structure and soil vibrations and wave propagation; soil-structure dynamic interaction problems in transportation; environmental vibration analysis and testing; vehicle, machine and human-induced vibrations; monitoring, evaluation and control of traffic induced vibrations; transportation foundation deformation and deterioration induced by vibration; structural safety and serviceability of railways, metros, roadways and bridges; and application of geosynthetics in transportation infrastructure. It is a valuable resource for government managers, scientific researchers, and engineering professionals engaged in the field of geotechnical and transportation engineering.
This book presents cutting-edge theories, techniques, and methodologies in the multidisciplinary field of high-speed railways, sharing the revealing insights of elite scholars from China, the UK and Japan. It demonstrates the achievements that have been made regarding high-speed rail technologies in China from all aspects, while also providing a macro-level comparative study of related technologies in different countries. The book offers a valuable resource for researchers, engineers, industrial practitioners, graduate students, and professionals in the fields of Vehicles, Traction Power Supplies, Materials, and Infrastructure.
This book presents an integrated approach to sustainably fulfilling energy requirements, considering various energy-usage sectors and applicable technologies in those sectors. It discusses smart cities, focusing on the design of urban transport systems and sources of energy for mobility. It also shares thoughts on individual consumption for ensuring the sustainability of energy resources and technologies for emission reductions for both mobility and stationary applications. For the latter, it examines case studies related to energy consumption in the manufacturing sector as well as domestic energy requirements. In addition it explores various distribution and policy aspects related to the power sector and sources of energy such as coal and biomass. This book will serve as a valuable resource for researchers, practitioners, and policymakers alike.
This volume brings together the world's leading experts on urban and transport planning, environmental exposures, physical activity, health and health impact assessment to discuss challenges and solutions in cities. The book provides a conceptual framework and work program for actions and outlines future research needs. It presents the current evidence-base, the benefits of and numerous case studies on integrating health and the environment into urban development and transport planning. Within cities there is a considerable variation in the levels of environmental exposures such as ambient air pollution, noise, and temperature, green space availability and physical activity. Many of these exposures, and their adverse health impacts, are related to and are being exacerbated by urban and transport planning and policy. Emerging research suggests that urban and transport planning indicators such as road network, distance to major roads, traffic density, household density, industry, and natural and green space can explain a large proportion of the variability in environmental exposures and therefore represent important and highly modifiable factors. The urban environment is a complex interlinked system. Decision-makers need not only better data on the complexity of factors in environmental and developmental processes affecting human health, but also an enhanced understanding of the linkages between these factors and health effects to determine at which level to target their actions most effectively. In recent years, there also has been a shift from trying to change at the national level to more comprehensive and ambitious actions being developed and implemented at the regional and local levels. Cities have come to the forefront of providing solutions for environmental issues such as climate change, which has co-benefits for health, but yet need better knowledge for wider health-centric action. This book provides the latest and most up-to-date information and studies for academics and practitioners alike.
In order to build a sustainable transport system for people and goods that meets the needs of all users, a truly integrated and seamless approach is needed, and the full potential of transformative technologies has to be exploited. This can only be achieved if user-centeredness, cross-modality and technology transfer become the paradigm of shaping future transport. Mobility4EU is a project funded by the European Commission that focusses on these topics and is working on delivering an action plan towards a user-centric and cross-modal European transport system in 2030. The authors of this contributed volume are dedicated scholars and practitioners connected to Mobility4EU either as partners or external contributors. Their contributions focus on understanding user needs and report on technologies and approaches that support the tailoring of a user-centered cross-modal transport system for passengers and freight on long distances and in the urban context.
The proceedings collect the latest research trends, methods and experimental results in the field of electrical and information technologies for rail transportation. The topics cover novel traction drive technologies of rail transportation, safety technology of rail transportation system, rail transportation information technology, rail transportation operational management technology, rail transportation cutting-edge theory and technology etc. The proceedings can be a valuable reference work for researchers and graduate students working in rail transportation, electrical engineering and information technologies.
The proceedings collect the latest research trends, methods and experimental results in the field of electrical and information technologies for rail transportation. The topics cover novel traction drive technologies of rail transportation, safety technology of rail transportation system, rail transportation information technology, rail transportation operational management technology, rail transportation cutting-edge theory and technology etc. The proceedings can be a valuable reference work for researchers and graduate students working in rail transportation, electrical engineering and information technologies.
The quantity, diversity and availability of transport data is increasing rapidly, requiring new skills in the management and interrogation of data and databases. Recent years have seen a new wave of 'big data', 'Data Science', and 'smart cities' changing the world, with the Harvard Business Review describing Data Science as the "sexiest job of the 21st century". Transportation professionals and researchers need to be able to use data and databases in order to establish quantitative, empirical facts, and to validate and challenge their mathematical models, whose axioms have traditionally often been assumed rather than rigorously tested against data. This book takes a highly practical approach to learning about Data Science tools and their application to investigating transport issues. The focus is principally on practical, professional work with real data and tools, including business and ethical issues. "Transport modeling practice was developed in a data poor world, and many of our current techniques and skills are building on that sparsity. In a new data rich world, the required tools are different and the ethical questions around data and privacy are definitely different. I am not sure whether current professionals have these skills; and I am certainly not convinced that our current transport modeling tools will survive in a data rich environment. This is an exciting time to be a data scientist in the transport field. We are trying to get to grips with the opportunities that big data sources offer; but at the same time such data skills need to be fused with an understanding of transport, and of transport modeling. Those with these combined skills can be instrumental at providing better, faster, cheaper data for transport decision- making; and ultimately contribute to innovative, efficient, data driven modeling techniques of the future. It is not surprising that this course, this book, has been authored by the Institute for Transport Studies. To do this well, you need a blend of academic rigor and practical pragmatism. There are few educational or research establishments better equipped to do that than ITS Leeds". - Tom van Vuren, Divisional Director, Mott MacDonald "WSP is proud to be a thought leader in the world of transport modelling, planning and economics, and has a wide range of opportunities for people with skills in these areas. The evidence base and forecasts we deliver to effectively implement strategies and schemes are ever more data and technology focused a trend we have helped shape since the 1970's, but with particular disruption and opportunity in recent years. As a result of these trends, and to suitably skill the next generation of transport modellers, we asked the world-leading Institute for Transport Studies, to boost skills in these areas, and they have responded with a new MSc programme which you too can now study via this book." - Leighton Cardwell, Technical Director, WSP. "From processing and analysing large datasets, to automation of modelling tasks sometimes requiring different software packages to "talk" to each other, to data visualization, SYSTRA employs a range of techniques and tools to provide our clients with deeper insights and effective solutions. This book does an excellent job in giving you the skills to manage, interrogate and analyse databases, and develop powerful presentations. Another important publication from ITS Leeds." - Fitsum Teklu, Associate Director (Modelling & Appraisal) SYSTRA Ltd "Urban planning has relied for decades on statistical and computational practices that have little to do with mainstream data science. Information is still often used as evidence on the impact of new infrastructure even when it hardly contains any valid evidence. This book is an extremely welcome effort to provide young professionals with the skills needed to analyse how cities and transport networks actually work. The book is also highly relevant to anyone who will later want to build digital solutions to optimise urban travel based on emerging data sources". - Yaron Hollander, author of "Transport Modelling for a Complete Beginner"
This book introduces readers to two major sustainable applications of linear synchronous machines: wave energy conversion and magnetic levitation train technology. To do so, it begins with a state-of-the-art review of linear machines, covering induction and synchronous topologies and their applications, with a particular focus on sustainable applications. This is followed by an analysis of the electromagnetic modeling of linear synchronous machines, the goal being to investigate their main features, especially their force production capabilities.
Ever stringent vehicle safety legislation and consumer expectations inspire the improvement of vehicle dynamic performance, which result in a rising number of control strategies for vehicle dynamics that rely on driving conditions. Road profiles, as the primary excitation source of vehicle systems, play a critical role in vehicle dynamics and also in public transportation. Knowledge of precise road conditions can thus be of great assistance for vehicle companies and government departments to develop proper dynamic control algorithms, and to fix roads in a timely manner and at the minimum cost, respectively. As a result, developing easy-to-use and accurate road estimation methods are of great importance in terms of reducing the cost related to vehicles and road maintenance as well as improving passenger comfort and handling capacity. A few books have already been published on road profile modeling and the influence of road unevenness on vehicle response. However, there is still room to discuss road assessment methods based on vehicle response and how road conditions can be used to improve vehicle dynamics. In this book, we use several generalized vehicle models to demonstrate the concepts, methods, and applications of vehicle response-based road estimation algorithms. In addition, necessary tools, algorithms, and methods are illustrated, and the benefits of the road estimation algorithms are evaluated. Furthermore, several case studies of controllable suspension systems to improve vehicle vertical dynamics are presented.
This book offers an overview of sustainability and urban mobility in the context of urban planning - topics that are of considerable interest in the development of smart cities. Environmental sustainability is universally recognized as a fundamental condition for any urban policy or urban management activity, while mobility is essential for the survival of complex urban systems. The new opportunities offered by innovations in the mobility of people, goods and information, as well as radically changing interactions and activities are transforming cities. Including contributions by urban planning scholars, the book provides an up-to-date picture of the latest studies and innovative policies and practices in Italy, of particular interest due to its spatial, functional and social peculiarities. Sustainability and mobility must form the basis of "smart planning" - a new dimension of urban planning linked to two main innovations: procedural innovation in the management of territorial transformations and the technological innovation of the generation, processing and distribution of data (big data) for the creation of new "digital environments" such as GIS, BIM, models of augmented and mixed reality, useful for describing changes in human settlement in real time. |
You may like...
Computational Modeling of Intelligent…
Mostafa Baghani, Majid Baniassadi, …
Paperback
R3,933
Discovery Miles 39 330
Solid Fuels and Heavy Hydrocarbon…
Rafael Kandiyoti, Alan Herod, …
Hardcover
Thermodynamics, Diffusion and the…
Aloke Paul, Tomi Laurila, …
Hardcover
R4,959
Discovery Miles 49 590
Handbook for Transversely Finned Tube…
Eugene Pis'Mennyi, Georgiy Polupan, …
Paperback
Advances in Heat Transfer, Volume 50
Ephraim M. Sparrow, John Patrick Abraham, …
Hardcover
R4,671
Discovery Miles 46 710
Low Grade Heat Driven Multi-Effect…
Hui Tong Chua, Bijan Rahimi
Paperback
R3,531
Discovery Miles 35 310
Professor I. I. Glass: A Tribute and…
Kazuyoshi Takayama, Ozer Igra
Hardcover
R2,658
Discovery Miles 26 580
Deployment of Carbon Capture and Storage…
Lydia Rycroft, Filip Neele
Paperback
R4,788
Discovery Miles 47 880
|