![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Civil engineering, surveying & building > Highway & traffic engineering
This book discusses vehicular communication systems, IoT, intelligent transportation systems and the Internet of Vehicles, and also introduces destination marketing in a structured manner. It is primarily intended for research students interested in emerging technologies for connected Internet of Vehicles and intelligent transportation system networks; academics in higher education institutions, including universities and vocational colleges; IT professionals; policy makers; and legislators. The book can also be used as a reference resource for both undergraduate and graduate studies. Written in plain and simple language, it describes new concepts so that they are accessible to readers without prior knowledge of the field.
This is the sixth volume of a sub series on Road Vehicle Automation published within the Lecture Notes in Mobility. The contents have been provided by researchers, engineers and analysts from all around the world. Topics covered include public sector activities, human factors and challenges, ethical, legal, energy and technology perspectives, vehicle systems development, as well as transportation infrastructure and planning. The book is based on the Automated Vehicles Symposium held on July 9-12, 2018 in San Francisco, CA (USA).
This book presents the latest, most interesting research efforts regarding Intelligent Transport System (ITS) technologies, from theory to practice. The book's main theme is "Mobility for everyone by ITS"; accordingly, it gathers a range of contributions on human-centered factors in the use or development of ITS technologies, infrastructures, and applications. Each of these contributions proposes a novel method for ITS and discusses the method on the basis of case studies conducted in the Asia-Pacific region. The book are roughly divided into four general categories: 1) Safe and Secure Society, 2) ITS-Based Smart Mobility, 3) Next-Generation Mobility, and 4) Infrastructure Technologies for Practical ITS. In these categories, several key topics are touched on with each other such as driver assistance and behavior analysis, traffic accident and congestion management, vehicle flow management at large events, automated or self-driving vehicles, V2X technologies, next-generation public transportation systems, and intelligent transportation systems made possible by big data analysis. In addition, important current and future ITS-related problems are discussed, taking into account many case studies that have been conducted in this regard.
The book gathers selected papers presented at the KES International Symposium on Smart Transportation Systems (KES-STS 2019). Modern transportation systems have undergone a rapid transformation in recent years. This has produced a range of vehicle technology innovations such as connected vehicles, self-driving cars, electric vehicles, Hyperloop, and even flying cars, and with them, fundamental changes in transport systems around the world. The book discusses current challenges, innovations and breakthroughs in Smart Transportation Systems, as well as transport infrastructure modeling, safety analysis, freeway operations, intersection analysis, and other related cutting-edge topics.
This proceedings volume examines individual city transports, transport companies and entire transport systems. Featuring select contributions presented at the 2018 TranSopot Conference in Sopot, Poland, this book provides an analysis of transportation solutions both at the micro-level (single city or single company) as well as the macro-level (whole transportation systems). The enclosed research and case studies provide a theoretical background for transport analysis but also new innovative and sustainable solutions to transportation while also increasing the efficiency of transport operations. Transportation is a very specific area of social and economic life. It creates countless opportunities and fulfills the need for mobility while also generating significant cost-direct for the company or indirect to societies. Planning and organizing transport is a task which requires a multi-level approach with a focus on operational, ecological and financial aspects. At a time in which many transport systems are unable to grow extensively due to lack of space or increased cost, these activities are even more crucial. The enclosed research from researchers, scholars and practitioners provides not only new theories but also empirical data and practical experience. The TranSopot 2018 conference is a continuation of a long series of conferences devoted to the topic of transport sector development. The goal of the conference is to exchange current trends and spread the results of current research into the fields of transport growth, development and management.
This volume presents a collection of rail orientated research articles, covering a variety of topics on rail operations research and management of rail systems as well as innovation, particularly focusing on sustainability aspects. The material consists of the most recent research work of the authors. The authorship is international, which makes it an interesting read for rail academics and professionals around the world. Although the material has a rail research focus the material is also excellent for preparation and delivery of rail, transport and logistics orientated courses and programmes. The target audience primarily comprises research experts in transport research, but the book may also be beneficial for graduate students alike.
This book discusses the multiple systems that make commercial jet travel safe and convenient. The author starts by tracing the evolution of commercial jets from the Boeing 707 to the double decker Airbus A380. The next 7 chapters discuss flight controls, along with the high lift surfaces (flaps and slats) that are essential to allow high speed, low drag aircraft to take-off and land. The other systems include Engines/Nacelles, Cabin Pressurization and Air Conditioning systems, Landing Gear and brakes, Fuel Systems, Instruments/Sensors, and finally Deicing systems for the wings, nacelles and external air speed sensors. Case studies describe a significant accident that arose from a failure in the various systems described. The final chapter summarizes the past 60 years of jet travel and describe how these systems have created a cheaper, safer mode of travel than any other.
This book gathers together innovative research and practical findings relating to urban mobility transformation. It is especially intended to provide academicians, researchers, practitioners and decision makers with effective strategies and techniques that can support urban mobility in a sustainable way. The chapters, which report on contributions presented at the 5th Conference on Sustainable Urban Mobility, held virtually on June 17-19, 2020, from Greece, cover the thematic areas of: social networks and traveler behavior; applications of technologies in transportation and big data analytics; transport infrastructure and traffic management; and transportation modeling and impact assessment. Special attention is given to public transport and demand responsive systems, electromobility, micromobility and automated vehicles. The book addresses the challenges of the near future, highlighting the importance of knowledge transfer, and it is intended to foster communication among universities, industries and public administration.
The intelligent vehicle will play a crucial and essential role in the development of the future intelligent transportation system, which is developing toward the connected driving environment, ultimate driving safety, and comforts, as well as green efficiency. While the decision making, planning, and control are extremely vital components of the intelligent vehicle, these modules act as a bridge, connecting the subsystem of the environmental perception and the bottom-level control execution of the vehicle as well. This short book covers various strategies of designing the decision making, trajectory planning, and tracking control, as well as share driving, of the human-automation to adapt to different levels of the automated driving system. More specifically, we introduce an end-to-end decision-making module based on the deep Q-learning, and improved path-planning methods based on artificial potentials and elastic bands which are designed for obstacle avoidance. Then, the optimal method based on the convex optimization and the natural cubic spline is presented. As for the speed planning, planning methods based on the multi-object optimization and high-order polynomials, and a method with convex optimization and natural cubic splines, are proposed for the non-vehicle-following scenario (e.g., free driving, lane change, obstacle avoidance), while the planning method based on vehicle-following kinematics and the model predictive control (MPC) is adopted for the car-following scenario. We introduce two robust tracking methods for the trajectory following. The first one, based on nonlinear vehicle longitudinal or path-preview dynamic systems, utilizes the adaptive sliding mode control (SMC) law which can compensate for uncertainties to follow the speed or path profiles. The second one is based on the five-degrees-of-freedom nonlinear vehicle dynamical system that utilizes the linearized time-varying MPC to track the speed and path profile simultaneously. Toward human-automation cooperative driving systems, we introduce two control strategies to address the control authority and conflict management problems between the human driver and the automated driving systems. Driving safety field and game theory are utilized to propose a game-based strategy, which is used to deal with path conflicts during obstacle avoidance. Driver's driving intention, situation assessment, and performance index are employed for the development of the fuzzy-based strategy. Multiple case studies and demos are included in each chapter to show the effectiveness of the proposed approach. We sincerely hope the contents of this short book provide certain theoretical guidance and technical supports for the development of intelligent vehicle technology.
This book provides cutting-edge insights into autonomous vehicles and road terrain classification, and introduces a more rational and practical method for identifying road terrain. It presents the MRF algorithm, which combines the various sensors' classification results to improve the forward LRF for predicting upcoming road terrain types. The comparison between the predicting LRF and its corresponding MRF show that the MRF multiple-sensor fusion method is extremely robust and effective in terms of classifying road terrain. The book also demonstrates numerous applications of road terrain classification for various environments and types of autonomous vehicle, and includes abundant illustrations and models to make the comparison tables and figures more accessible.
This book elaborates the science and engineering basis for energy-efficient driving in conventional and autonomous cars. After covering the physics of energy-efficient motion in conventional, hybrid, and electric powertrains, the book chiefly focuses on the energy-saving potential of connected and automated vehicles. It reveals how being connected to other vehicles and the infrastructure enables the anticipation of upcoming driving-relevant factors, e.g. hills, curves, slow traffic, state of traffic signals, and movements of nearby vehicles. In turn, automation allows vehicles to adjust their motion more precisely in anticipation of upcoming events, and to save energy. Lastly, the energy-efficient motion of connected and automated vehicles could have a harmonizing effect on mixed traffic, leading to additional energy savings for neighboring vehicles. Building on classical methods of powertrain modeling, optimization, and optimal control, the book further develops the theory of energy-efficient driving. In addition, it presents numerous theoretical and applied case studies that highlight the real-world implications of the theory developed. The book is chiefly intended for undergraduate and graduate engineering students and industry practitioners with a background in mechanical, electrical, or automotive engineering, computer science or robotics.
This book offers an update on recent developments in modern engineering design. Different engineering disciplines, such as mechanical, materials, computer and process engineering, provide the foundation for the design and development of improved structures, materials and processes. The modern design cycle is characterized by the interaction between various disciplines and a strong shift to computer-based approaches where only a few experiments are conducted for verification purposes. A major driver for this development is the increased demand for cost reduction, which is also linked to environmental demands. In the transportation industry (e.g. automotive or aerospace), the demand for higher fuel efficiency is related to reduced operational costs and less environmental damage. One way to fulfil such requirements is lighter structures and/or improved processes for energy conversion. Another emerging area is the interaction of classical engineering with the health and medical sector.
This book covers the basic scientific theory and related application technologies of the pantograph-catenary system, including research findings on pantograph/catenary contact resistance, pantograph interface thermal effect, laws and characteristics of current-carrying friction and wear, the main research methods for pantograph arcs, the effects of arcs on pantograph systems and onboard equipment, and the materials used for pantographs and contact wires. Given its scope, it offers a valuable resource for students, scholars, and development engineers alike. The relationship between pantograph and catenary is one of the three core aspects of the safe operation of high-speed electrified railways. The pantograph system provides electric power for the high-speed train through the sliding electric contact. As the train's operating speed increases, the pantograph system enters a state of prolonged sliding/vibration, resulting in frequent arcs, electrode erosion, and increased wear.
This book reports on cutting-edge theories and methods for analyzing complex systems, such as transportation and communication networks and discusses multi-disciplinary approaches to dependability problems encountered when dealing with complex systems in practice. The book presents the most noteworthy methods and results discussed at the International Conference on Reliability and Statistics in Transportation and Communication (RelStat), which took place in Riga, Latvia on October 16 - 19, 2019. It spans a broad spectrum of topics, from mathematical models and design methodologies, to software engineering, data security and financial issues, as well as practical problems in technical systems, such as transportation and telecommunications, and in engineering education.
This proceedings volume explores the latest advances in transport and logistics, while also discussing the applications of modern information technologies, telecommunications, electronics, and prospective research methods and analyzing their impacts on society and the environment, which in turn determine the future development of these technologies. The book is intended for a broad readership, including transport and logistics business planners and technical experts, leveraging industry knowledge and facilitating technology adoption in promising business regions and transit corridors such as Ukraine, Kazakhstan, and others. The authors, who include policy planners and crafters as well as education and training professionals, address various types of intermodal transport such as rail, road, maritime, air, etc.
This book studies the design optimization, state estimation, and advanced control methods for cyber-physical vehicle systems (CPVS) and their applications in real-world automotive systems. First, in Chapter 1, key challenges and state-of-the-art of vehicle design and control in the context of cyber-physical systems are introduced. In Chapter 2, a cyber-physical system (CPS) based framework is proposed for high-level co-design optimization of the plant and controller parameters for CPVS, in view of vehicle's dynamic performance, drivability, and energy along with different driving styles. System description, requirements, constraints, optimization objectives, and methodology are investigated. In Chapter 3, an Artificial-Neural-Network-based estimation method is studied for accurate state estimation of CPVS. In Chapter 4, a high-precision controller is designed for a safety-critical CPVS. The detailed control synthesis and experimental validation are presented. The application results presented throughout the book validate the feasibility and effectiveness of the proposed theoretical methods of design, estimation, control, and optimization for cyber-physical vehicle systems.
This book presents the findings of scientific studies on the successful operation of complex transport infrastructures in regions with extreme climatic and geographical conditions. It features the proceedings of the VIII International Scientific Siberian Transport Forum, TransSiberia 2019, which was held in Novosibirsk, Russia, on May 22-27, 2019. The book discusses improving energy efficiency in the transportation sector and the use of artificial intelligence in transport, highlighting a range of topics, such as freight and logistics, freeway traffic modelling and control, intelligent transport systems and smart mobility, transport data and transport models, highway and railway construction and trucking on the Siberian ice roads. Consisting of 214 high-quality papers on a wide range of issues, these proceedings appeal to scientists, engineers, managers in the transport sector, and anyone involved in the construction and operation of transport infrastructure facilities.
The publication delivers numerous valuable guidelines, particularly useful when making decisions related in the subject matter to road and rail nodes located in dense transport networks. The know-how displayed while discussing practical examples as well as the decision making support systems described in the publication will certainly attract the interest of those who daily face the challenge of seeking solutions to the operational and functional problems of transport nodes in contemporary transport networks and systems. This publication is dedicated to local authorities involved in planning and preparation of development strategies for specific transport-related issues (in both urban and regional areas) as well as to representatives of business and industry, being those who participate directly in the implementation of traffic engineering solutions. The guidelines provided in individual chapters of the publication will make it possible to address the given problem in an advanced manner and simplify the choice of appropriate strategies (including those related to synchronisation of road traffic streams, improving the capacity, road traffic safety analysis, evaluation of changes in drivers' behaviour on account of introducing countdown timers at signal-controlled intersections using UAV data, the influence of the type of traffic organisation on the behaviour of pedestrians at tram line crossings). On the other hand, since the publication also concerns the new approach to theoretical models (including potential places of integration of public transport with the railway network or the speed adviser for pedestrians enabling them to choose the optimal path at signal-controlled intersections), it should also attract the attention of researches and scientists studying this body of problems. The publication entitled "Nodes in transport networks - research, data analysis and modelling" contains selected papers submitted to and presented at the 16th "Transport Systems. Theory and Practice" Scientific and Technical Conference organized by the Department of Transport Systems and Traffic Engineering at the Faculty of Transport of the Silesian University of Technology. The conference was held on 16-18 September 2019 in Katowice (Poland).
This contributed volume contains the conference proceedings of the Simulation of Urban Mobility (SUMO) conference 2015, Berlin. The included papers cover a wide range of topics in traffic planning and simulation, including intermodal simulation, intermodal transport, vehicular communication, modeling urban mobility, open data as well as autonomous driving. The target audience primarily comprises researchers and experts in the field of mobility research, but the book may also be beneficial for graduate students.
This book addresses the challenges of planning sustainable freight transport systems (road and air) in a time when the industry faces increasing pressure from environmental limits, climate change, carbon emission targets, bottlenecks in oil supply, infrastructure shortages and urban congestion. The author examines sustainable freight transport over the last 45 years on three continents, and includes developments on transport economics, logistics and transport geography as well as environmental economics. Readers will gain valuable insight on a number of practices and methodologies that will assist in making their systems more sustainable with fewer negative environmental effects at both the local and global level.
This proceedings book gathers selected papers presented at the 16th Scientific and Technical Conference "Transport Systems. Theory and Practice", organised by the Department of Transport Systems and Traffic Engineering at the Faculty of Transport of the Silesian University of Technology. The conference was held on 16-18 September 2019 in Katowice (Poland). More details at www.TSTP.polsl.pl Which of the multi-criteria methods should be applied to support decision-making processes while tackling problems of sustainable transport solutions? How can individual issues encountered when implementing smart solutions in transport systems be solved? What advanced tools can be used to assess the current condition of selected elements of transport systems (both in terms of transport infrastructure and traffic streams)? What data concerning transport processes can be collected automatically and how can we use it? What is the right approach to the problem of the development of the spatial planning of transport systems? This book provides the answers to these and many other questions. It also includes a wealth of numerical analyses based on significant data sets, illustrating the close affiliation between smart transport systems and environment-friendly solutions. The book primarily addresses the needs of three target groups: * Scientists and researchers (ITS field) * Those working for local authorities (responsible for the transport systems at the urban and regional levels) * Representatives of business (traffic strategy management) and industry (manufacturers of ITS components).
This book presents a number of guidelines that are particularly useful in the context of decisions related to system-approach-based modern traffic engineering for the development of transport networks. Including practical examples and describing decision-making support systems it provides valuable insights for those seeking solutions to contemporary transport system problems on a daily basis, such as professional working for local authorities involved in planning urban and regional traffic development strategies as well as representatives of business and industry directly involved in implementing traffic engineering solutions. The guidelines provided enable readers to address problems in a timely manner and simplify the choice of appropriate strategies (including those connected with the relation between pedestrians and vehicle traffic flows, IT development in freight transport, safety issues related to accidents in road tunnels, but also open areas, like roundabouts and crossings). Furthermore, since the book also examines new theoretical-model approaches (including the model of arrival time distribution forming in a dense vehicle flow, the methodological basis of modelling and optimization of transport processes in the interaction of railways and maritime transport, traffic flow surveys and measurements, transport behaviour patterns, human factors in traffic engineering, and road condition modelling), it also appeals to researches and scientists studying these problems. This book features selected papers submitted to and presented at the 16th Scientific and Technical Conference Transport Systems Theory and Practice organized by the Department of Transport Systems and Traffic Engineering at the Faculty of Transport of the Silesian University of Technology. The conference was held on 16-18 September 2019 in Katowice (Poland), more details at www.TSTP.polsl.pl.
International Conference on Artificial Intelligence in Renewable Energetic Systems, IC-AIRES2019, 26-28 November 2019, Taghit-Bechar, Algeria. The challenges of the energy transition in the medium term lead to numerous technological breakthroughs in the areas of production, optimal distribution and the rational use of energy and renewable energy (energy efficiency and optimization of consumption, massive electrification, monitoring and control energy systems, cogeneration and energy recovery processes, new and renewable energies, etc.). The fall in the cost of renewable energies and the desire for a local control of energy production are today calling for a profound change in the electricity system. Local authorities are at the center of energy developments by taking into account the local nature of certain energy systems, heat networks, geothermal energy, waste heat recovery, and electricity generation from household waste. On the other side, digital sciences are at the heart of connected objects and intelligent products that combine information processing and communication capabilities with their environment. Digital technology is at the center of new systems engineering approaches (3D modeling, virtualization, simulation, digital prototyping, etc.) for the design and development of intelligent systems. The book deals with various topics ranging from the design, development and maintenance of energy production systems, transport, distribution or storage of energy, optimization of energy efficiency, especially in the use of energy. innovation in the fields of energy production from renewable energies, management of energy networks: electricity, fluids, gas, district heating, energy storage modes: battery, super-capacitors , overseeing energy supply through supervision, control and diagnosis, risk management, as well as the design and management of smart grids: microgrid, smartgrid. This imposes the model of energy empowerment in the advent of smart cities. Empower the world's most vulnerable energy-poor citizens and establish growing and vibrant socioeconomic communities, by academics, students in engineering and data computing from around the world who have chosen an academic path leading to an electric power and energy engineering and artificial intelligence to advancing technology for the advantage of humanity.
Powertrain electrification, fuel decarburization, and energy diversification are techniques that are spreading all over the world, leading to cleaner and more efficient vehicles. Hybrid electric vehicles (HEVs) are considered a promising technology today to address growing air pollution and energy deprivation. To realize these gains and still maintain good performance, it is critical for HEVs to have sophisticated energy management systems. Supervised by such a system, HEVs could operate in different modes, such as full electric mode and power split mode. Hence, researching and constructing advanced energy management strategies (EMSs) is important for HEVs performance. There are a few books about rule- and optimization-based approaches for formulating energy management systems. Most of them concern traditional techniques and their efforts focus on searching for optimal control policies offline. There is still much room to introduce learning-enabled energy management systems founded in artificial intelligence and their real-time evaluation and application. In this book, a series hybrid electric vehicle was considered as the powertrain model, to describe and analyze a reinforcement learning (RL)-enabled intelligent energy management system. The proposed system can not only integrate predictive road information but also achieve online learning and updating. Detailed powertrain modeling, predictive algorithms, and online updating technology are involved, and evaluation and verification of the presented energy management system is conducted and executed.
The next generation of autonomous vehicles will provide major improvements in traffic flow, fuel efficiency, and vehicle safety. Several challenges currently prevent the deployment of autonomous vehicles, one aspect of which is robust and adaptable vehicle control. Designing a controller for autonomous vehicles capable of providing adequate performance in all driving scenarios is challenging due to the highly complex environment and inability to test the system in the wide variety of scenarios which it may encounter after deployment. However, deep learning methods have shown great promise in not only providing excellent performance for complex and non-linear control problems, but also in generalizing previously learned rules to new scenarios. For these reasons, the use of deep neural networks for vehicle control has gained significant interest. In this book, we introduce relevant deep learning techniques, discuss recent algorithms applied to autonomous vehicle control, identify strengths and limitations of available methods, discuss research challenges in the field, and provide insights into the future trends in this rapidly evolving field. |
You may like...
The Major Street Plan for Houston and…
Houston City Planning Commission
Hardcover
R666
Discovery Miles 6 660
Highway Bridge Maintenance Planning and…
Mark A. Hurt, Steven D. Schrock
Paperback
The Old Pike - A History of the National…
Thomas Brownfield Searight
Hardcover
R1,082
Discovery Miles 10 820
The Development of a State Policy in…
North Carolina Good Roads Association
Hardcover
R771
Discovery Miles 7 710
|