![]() |
![]() |
Your cart is empty |
||
Books > Academic & Education > Varsity Textbooks > Mathematics & Science
This book builds theoretical statistics from the first principles of probability theory. Starting from the basics of probability, the authors develop the theory of statistical inference using techniques, definitions, and concepts that are statistical and are natural extensions and consequences of previous concepts. Intended for first-year graduate students, this book can be used for students majoring in statistics who have a solid mathematics background. It can also be used in a way that stresses the more practical uses of statistical theory, being more concerned with understanding basic statistical concepts and deriving reasonable statistical procedures for a variety of situations, and less concerned with formal optimality investigations.
This extensively illustrated book presents the astrophysics of galaxies since their beginnings in the early Universe. It has been thoroughly revised to take into account the most recent observational data, and recent discoveries such as dark energy. There are new sections on galaxy clusters, gamma ray bursts and supermassive black holes. The authors explore the basic properties of stars and the Milky Way before working out towards nearby galaxies and the distant Universe. They discuss the structures of galaxies and how galaxies have developed, and relate this to the evolution of the Universe. The book also examines ways of observing galaxies across the whole electromagnetic spectrum, and explores dark matter and its gravitational pull on matter and light. This book is self-contained and includes several homework problems with hints. It is ideal for advanced undergraduate students in astronomy and astrophysics.
Directly oriented towards real practical application, this book develops both the basic theoretical framework of extreme value models and the statistical inferential techniques for using these models in practice. Intended for statisticians and non-statisticians alike, the theoretical treatment is elementary, with heuristics often replacing detailed mathematical proof. Most aspects of extreme modeling techniques are covered, including historical techniques (still widely used) and contemporary techniques based on point process models. A wide range of worked examples, using genuine datasets, illustrate the various modeling procedures and a concluding chapter provides a brief introduction to a number of more advanced topics, including Bayesian inference and spatial extremes. All the computations are carried out using S-PLUS, and the corresponding datasets and functions are available via the Internet for readers to recreate examples for themselves. An essential reference for students and researchers in statistics and disciplines such as engineering, finance and environmental science, this book will also appeal to practitioners looking for practical help in solving real problems. Stuart Coles is Reader in Statistics at the University of Bristol, UK, having previously lectured at the universities of Nottingham and Lancaster. In 1992 he was the first recipient of the Royal Statistical Society's research prize. He has published widely in the statistical literature, principally in the area of extreme value modeling.
"Vegetation Description and Data Analysis: A Practical Approach," Second Edition is a fully revised and up-dated edition of this key text. The book takes account of recent advances in the field whilst retaining the original reader-friendly approach to the coverage of vegetation description and multivariate analysis in the context of vegetation data and plant ecology. Since the publication of the hugely popular first edition there
have been significant developments in computer hardware and
software, new key journals have been established in the field and
scope and application of vegetation description and analysis has
become a truly global field. This new edition includes full
coverage of new developments and technologies.
Since the publication of the first edition over 50 years ago,
Introduction to Solid State Physics has been the standard solid
state physics text for physics students. The author's goal from the
beginning has been to write a book that is accessible to
undergraduates and consistently teachable. The emphasis in the book
has always been on physics rather than formal mathematics. With
each new edition, the author has attempted to add important new
developments in the field without sacrificing the book's
accessibility and teachability.
This textbook provides a concise introduction to the basis of matrix theory. The text of the first edition has been re-written and revised to take account of recent developments in statistical practice. The more difficult topics have been expanded and the mathematical explanations have been simplified. A new chapter has been included, at readers' request, to cover such topics as vectorising, matrix calculus and complex numbers.
This book is for instructors who think that most calculus textbooks are too long. In writing the book, James Stewart asked himself: What is essential for a calculus course for scientists and engineers? ESSENTIAL CALCULUS, 2E, International Metric Edition offers a concise approach to teaching calculus that focuses on major concepts, and supports those concepts with precise definitions, patient explanations, and carefully graded problems. The book is only 900 pages-two-thirds the size of Stewart's other calculus texts, and yet it contains almost all of the same topics. The author achieved this relative brevity primarily by condensing the exposition and by putting some of the features on the book's website, www.StewartCalculus.com. Despite the more compact size, the book has a modern flavor, covering technology and incorporating material to promote conceptual understanding, though not as prominently as in Stewart's other books. ESSENTIAL CALCULUS, 2E, International Metric Edition features the same attention to detail, eye for innovation, and meticulous accuracy that have made Stewart's textbooks the best-selling calculus texts in the world.
This is the first text in a generation to re-examine the purpose of the mathematical statistics course. The book's approach interweaves traditional topics with data analysis and reflects the use of the computer with close ties to the practice of statistics. The author stresses analysis of data, examines real problems with real data, and motivates the theory. The book's descriptive statistics, graphical displays, and realistic applications stand in strong contrast to traditional texts that are set in abstract settings.
The renowned Oxford Chemistry Primer series, which provides focused introductions to a range of important topics in chemistry, has been refreshed and updated to suit the needs of today's students, lecturers, and postgraduate researchers. The rigorous, yet accessible, treatment of each subject area is ideal for those wanting a primer in a given topic to prepare them for more advanced study or research. Moreover, cutting-edge examples and applications throughout the texts show the relevance of the chemistry being described to current research and industry. The learning features provided, including questions at the end of every chapter and online multiple-choice questions, encourage active learning and promote understanding. Furthermore, frequent diagrams, margin notes, further reading, and glossary definitions all help to enhance a student's understanding of these essential areas of chemistry. Foundations of Molecular Structure Determination covers a range of common spectroscopic and diffraction methods alongside frequent worked examples and problem questions to assist beginning undergraduates in developing their skills in structure analysis. Furthermore, the practical application of these techniques is emphasized, especially to biological and medical systems. Online Resource Centre The Online Resource Centre to accompany Foundations of Molecular Structure Determination features: For registered adopters of the text: * Figures from the book available to download For students: * Downloadable CIF data files * Multiple-choice questions for self-directed learning * Full worked solutions to the end-of-chapter exercises
David Poole's innovative LINEAR ALGEBRA: A MODERN INTRODUCTION, 4e emphasizes a vectors approach and better prepares students to make the transition from computational to theoretical mathematics. Balancing theory and applications, the book is written in a conversational style and combines a traditional presentation with a focus on student-centered learning. Theoretical, computational, and applied topics are presented in a flexible yet integrated way. Stressing geometric understanding before computational techniques, vectors and vector geometry are introduced early to help students visualize concepts and develop mathematical maturity for abstract thinking. Additionally, the book includes ample applications drawn from a variety of disciplines, which reinforce the fact that linear algebra is a valuable tool for modeling real-life problems.
This definitive introduction to finite element methods has been thoroughly updated for a third edition which features important new material for both research and application of the finite element method. The discussion of saddle-point problems is a highlight of the book and has been elaborated to include many more nonstandard applications. The chapter on applications in elasticity now contains a complete discussion of locking phenomena. The numerical solution of elliptic partial differential equations is an important application of finite elements and the author discusses this subject comprehensively. These equations are treated as variational problems for which the Sobolev spaces are the right framework. Graduate students who do not necessarily have any particular background in differential equations, but require an introduction to finite element methods will find this text invaluable. Specifically, the chapter on finite elements in solid mechanics provides a bridge between mathematics and engineering.
Intended for those with a limited background in genetic studies, this concise, entry-level text in conservation genetics is presented in a user-friendly format, with main points clearly highlighted. Solved problems are provided throughout to help illustrate key equations, although a basic knowledge of Mendelian genetics and simple statistics is assumed. A glossary and suggestions for further reading provide additional support for the reader. Numerous pen-and-ink portraits of endangered species bring the material to life. Also available: Introduction to Conservation Genetics "...balance[s] student need for clarity and brevity with the requirements of conservation professionals for detailed applications." Choice 0-521-63014-2 Hardback $130.00 C 0-521-63985-9 Paperback $50.00 D
Slimkoppe Vaardigheidsboek vir Breuke is spesiaal ontwikkel om jou kind in graad 1 tot 3 met sleutelvaardighede van die Suid-Afrikaanse Kurrikulum te help. Die werkboek bied aktiwiteite op verskillende vlakke sodat jou kind stadig op die eerste vlak kan wegspring en geleidelik na die meer gevorderde aktiwiteite op die derde vlak kan vorder. Slimkoppe word geskryf deur ervare Suid-Afrikaanse onderwysers en bevat waardevolle notas, wenke en antwoorde vir ouers.
This popular, world-wide selling textbook teaches engineering mathematics in a step-by-step fashion and uniquely through engineering examples and exercises which apply the techniques right from their introduction. This contextual use of mathematics is highly motivating, as with every topic and each new page students see the importance and relevance of mathematics in engineering. The examples are taken from mechanics, aerodynamics, electronics, engineering, fluid dynamics and other areas. While being general and accessible for all students, they also highlight how mathematics works in any individual's engineering discipline. The material is often praised for its careful pace, and the author pauses to ask questions to keep students reflecting. Proof of mathematical results is kept to a minimum. Instead the book develops learning by investigating results, observing patterns, visualizing graphs and answering questions using technology. This textbook is ideal for first year undergraduates and those on pre-degree courses in Engineering (all disciplines) and Science. New to this Edition: - Fully revised and improved on the basis of student feedback - New sections - More examples, more exam questions - Vignettes and photos of key mathematicians Accompanying online resources for this title can be found at bloomsburyonlineresources.com/engineering-mathematics-through-applications-2. These resources are designed to support teaching and learning when using this textbook and are available at no extra cost.
This 1971 classic on linear models is once again available—as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.
Because of the ubiquitous nature of environmental problems, a variety of scientific disciplines are involved in the development of environmental solutions. The "Handbook of Chemical and Environmental Engineering Calculations" provides approximately 600 real-world, practical solutions to environmental problems that involve chemical engineering, enabling engineers and applied scientists to meet the professional challenges they face day-to-day. The scientific and mathematical crossover between chemical and environmental engineering is the key to solving a host of environmental problems. Many problems included in the "Handbook" are intended to demonstrate this crossover, as well as the integration of engineering with current regulations and environmental media such as air, soil, and water. Solutions to the problems are presented in a programmed instructional format. Each problem contains a title, problem statement, data, and solution, with the more difficult problems located near the end of each problem set. The Handbook offers material not only to individuals with limited technical background but also to those with extensive industrial experience. Chapter titles include:
Ideal for students at the graduate and undergraduate levels, the "Handbook of Chemical and Environmental Engineering Calculations" is also a comprehensive reference for all plant and environmental engineers, particularly those who work withair, drinking water, wastewater, hazardous materials, and solid waste.
This book introduces one of the most powerful tools of modern economics to a wide audience: those who will later construct or consume game-theoretic models. Robert Gibbons addresses scholars in applied fields within economics who want a serious and thorough discussion of game theory but who may have found other works overly abstract. Gibbons emphasizes the economic applications of the theory at least as much as the pure theory itself; formal arguments about abstract games play a minor role. The applications illustrate the process of model building--of translating an informal description of a multi-person decision situation into a formal game-theoretic problem to be analyzed. Also, the variety of applications shows that similar issues arise in different areas of economics, and that the same game-theoretic tools can be applied in each setting. In order to emphasize the broad potential scope of the theory, conventional applications from industrial organization have been largely replaced by applications from labor, macro, and other applied fields in economics. The book covers four classes of games, and four corresponding notions of equilibrium: static games of complete information and Nash equilibrium, dynamic games of complete information and subgame-perfect Nash equilibrium, static games of incomplete information and Bayesian Nash equilibrium, and dynamic games of incomplete information and perfect Bayesian equilibrium.
Guru and Hiziroglu have produced an accessible and user-friendly text on electromagnetics that will appeal to both students and professors teaching this course. This lively book includes many worked examples and problems in every chapter, as well as chapter summaries and background revision material where appropriate. The book introduces undergraduate students to the basic concepts of electrostatic and magnetostatic fields, before moving on to cover Maxwell's equations, propagation, transmission and radiation. Chapters on the Finite Element and Finite Difference method, and a detailed appendix on the Smith chart are additional enhancements. MathCad code for many examples in the book and a comprehensive solutions set are available at www.cambridge.org/9780521830164.
This clearly written , mathematically rigorous text includes a novel algorithmic exposition of the simplex method and also discusses the Soviet ellipsoid algorithm for linear programming; efficient algorithms for network flow, matching, spanning trees, and matroids; the theory of NP-complete problems; approximation algorithms, local search heuristics for NP-complete problems, more. All chapters are supplemented by thought-provoking problems. A useful work for graduate-level students with backgrounds in computer science, operations research, and electrical engineering. "Mathematicians wishing a self-contained introduction need look no further."-American Mathematical Monthly. 1982 ed.
The third edition of this successful textbook is fully updated and includes important recent developments in cosmology. It begins with an introduction to cosmology and general relativity, and goes on to cover the mathematical models of standard cosmology. The physical aspects of cosmology, including primordial nucleosynthesis, the astroparticle physics of inflation, and the current ideas on structure formation are discussed. Alternative models of cosmology are reviewed, including the model of Quasi-Steady State Cosmology, which has recently been proposed as an alternative to Big Bang Cosmology.
The essential introduction to the theory and application of linear models--now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-waymodels with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS(R) code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.
This text provides the fundamental concepts and techniques of real analysis for students in all of these areas. It helps one develop the ability to think deductively, analyse mathematical situations and extend ideas to a new context. Like the first three editions, this edition maintains the same spirit and user-friendly approach with addition examples and expansion on Logical Operations and Set Theory. There is also content revision in the following areas: introducing point-set topology before discussing continuity, including a more thorough discussion of limsup and limimf, covering series directly following sequences, adding coverage of Lebesgue Integral and the construction of the reals, and drawing student attention to possible applications wherever possible.
This undergraduate textbook merges traditional solid state physics with contemporary condensed matter physics, providing an up-to-date introduction to the major concepts that form the foundations of condensed materials. The main foundational principles are emphasized, providing students with the knowledge beginners in the field should understand. The book is structured in four parts and allows students to appreciate how the concepts in this broad area build upon each other to produce a cohesive whole as they work through the chapters. Illustrations work closely with the text to convey concepts and ideas visually, enhancing student understanding of difficult material, and end-of-chapter exercises varying in difficulty allow students to put into practice the theory they have covered in each chapter and reinforce new concepts.
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples. The book is organized into two main sections and a set of appendices. Part I addresses steady-state boundary value problems, starting with two-point boundary value problems in one dimension, followed by coverage of elliptic problems in two and three dimensions. It concludes with a chapter on iterative methods for large sparse linear systems that emphasizes systems arising from difference approximations. Part II addresses time-dependent problems, starting with the initial value problem for ODEs, moving on to initial boundary value problems for parabolic and hyperbolic PDEs, and concluding with a chapter on mixed equations combining features of ODEs, parabolic equations, and hyperbolic equations. The appendices cover concepts pertinent to Parts I and II. Exercises and student projects, developed in conjunction with this book, are available on the book's webpage along with numerous MATLAB m-files. Readers will gain an understanding of the essential ideas that underlie the development, analysis, and practical use of finite difference methods as well as the key concepts of stability theory, their relation to one another, and their practical implications. The author provides a foundation from which students can approach more advanced topics and further explore the theory and/or use of finite difference methods according to their interests and needs.
Substantially revised, this authoritative study covers the standard finite difference methods of parabolic, hyperbolic, and elliptic equations, and includes the concomitant theoretical work on consistency, stability, and convergence. The new edition includes revised and greatly expanded sections on stability based on the Lax-Richtmeyer definition, the application of Pade approximants to systems of ordinary differential equations for parabolic and hyperbolic equations, and a considerably improved presentation of iterative methods. A fast-paced introduction to numerical methods, this will be a useful volume for students of mathematics and engineering, and for postgraduates and professionals who need a clear, concise grounding in this discipline. |
![]() ![]() You may like...
Knowledge Discovery in Big Data from…
Petr Skoda, Fathalrahman Adam
Paperback
R2,613
Discovery Miles 26 130
Handbook of Qualitative Research Methods…
Keith Townsend, Rebecca Loudoun, …
Paperback
R1,393
Discovery Miles 13 930
Multi-Criteria Decision Making Theory…
Mohamed Abdel-Basset, Ripon Kumar Chakrabortty, …
Hardcover
R4,171
Discovery Miles 41 710
Italian Short Stories - 9 Simple and…
Language Learning University
Hardcover
Applications of Machine Learning and…
Faheem Masoodi, Mohammad Quasim, …
Hardcover
R3,560
Discovery Miles 35 600
|