![]() |
![]() |
Your cart is empty |
||
Books > Medicine > Other branches of medicine > Pathology > Medical microbiology & virology
This volume looks at the different aspects involved in controlling microbial growth and the techniques employed in obtaining sterile surfaces. It covers research on coatings, nano-materials, herbal materials, naturally occurring antimicrobials in designing antimicrobial surfaces. It discusses issues of antibiotic resistance, synthesis techniques, toxicity, and current and potential applications of antimicrobial surfaces, and this book will serve as a useful reference to a broad range of scientists, industrial practitioners, graduate and undergraduate students, and other professionals in the fields of polymer science and engineering, materials science, surface science, bioengineering and chemical engineering.
This two-volume work covers the molecular and cell biology, genetics and evolution of influenza viruses, the pathogenesis of infection, resultant host innate and adaptive immune response, prevention of infection through vaccination and approaches to the therapeutic control of infection.. Experts at the forefront of these areas provide critical assessments with regard to influenza virology, immunology, cell and molecular biology, and pathogenesis. Volume I provides overviews of the latest findings on molecular determinants of viral pathogenicity, virus entry and cell tropism, pandemic risk assessment, transmission and pathogenesis in animal species, viral evolution, ecology and antigenic variation, while Volume II focuses on the role of innate and adaptive immunity in pathogenesis, development of vaccines and antivirals.
Food Safety Management: A Practical Guide for the Food Industry, Second Edition continues to present a comprehensive, integrated and practical approach to the management of food safety throughout the production chain. While many books address specific aspects of food safety, no other book guides you through the various risks associated with each sector of the production process or alerts you to the measures needed to mitigate those risks. This new edition provides practical examples of incidents and their root causes, highlighting pitfalls in food safety management and providing key insights into different means for avoiding them. Each section addresses its subject in terms of relevance and application to food safety and, where applicable, spoilage. The book covers all types of risks (e.g., microbial, chemical, physical) associated with each step of the food chain, making it an ideal resource.
This new volume on Cryptosporidium and Cryptosporidiosis discusses all relevant aspects of the biology, molecular biology, host-parasite interaction, epidemiology as well as diagnosis and treatment of these widespread parasites. It represents a useful guide for physicians, microbiologists, veterinarians and water professionals seeking advanced knowledge and guidance about these important parasitic pathogens. A section on practical lab procedures discusses step-by-step guidelines for sample preparation and lab procedures. The new book may further serve as a reference work for graduate students in medical and veterinary microbiology.
This comprehensive, up-to-date volume defines the issues and offers potential solutions to the challenges of antimicrobial resistance. The chapter authors are leading international experts on antimicrobial resistance among a variety of bacteria, viruses including HIV and herpes, parasites and fungi. The chapters explore the molecular mechanisms of drug resistance, the immunology and epidemiology of resistance strains, clinical implications and implications on research and lack thereof, and prevention and future directions.
Astroviruses were first identified in the feces of children in 1975. Since then, they have been found in 3 to 20% of children with diarrhea. Given that serological studies have demonstrated that up to 90% of children have been exposed to at least one strain of astrovirus by age 9, the prevalence of infection may be much higher. Supporting this are studies demonstrating that astroviruses can also be isolated in a subset of asymptomatic individuals, suggesting that a proportion of infected individuals shed the virus asymptomatically or for some time after the resolution of other symptoms of infection. Asymptomatic carriers may be a major reservoir for astroviruses in the environment and could contribute to dissemination of the virus. Astroviruses are extremely stable in the environment and can be transmitted nosocomially, directly from infected individuals and potentially animals, and through contaminated food and water. Although typically an acute disease, astrovirus infection in premature infants may be associated with the development of necrotizing enterocolitis and in new-onset celiac disease in children. Immunocompromised children are even more susceptible often developing persistent infections that lead to wasting or even systemic infections associated with fatal encephalitis. In spite of its importance, little is known about astrovirus pathogenesis, molecular biology, epidemiology, or cell biology. The goal of this book is to provide the latest and most up-to-date information on this medically important and rapidly evolving group of viruses. It will include sections on the history of astroviruses and their disease in humans; information on viral replication and immune responses; new information on how astroviruses induce disease including the expression of a viral enterotoxin regulating intestinal epithelial cell tight junctions, the isolation and identification of new astrovirus genotypes in mammals including humans, and astroviruses of veterinary importance. Finally, the book will also introduce the complexity of astrovirus epidemiology and potential as an important new zoonotic disease, and its role in food-borne disease. This will be the first book of its kind and will be of great interest to microbiologists, virologists, infectious disease specialists, immunologists, pediatricians, public health and food safety experts, veterinarians, poultry industry specialists, and researchers and clinicians interested in enteritis. "
A decade has passed since Drs. Hoch and Silhavy edited their comprehensive work entitled Two-Component Signal Transduction. This fascinating book encour- aged many microbiologists and students to enter the new worldofsignal transduction in microbiology. In 2003, Dr. Inouye edited Histidine Kinase in Signal Transduc- tion, which focused on histidine kinases and presented the wealth ofinformation accumulated on this protein family. Bacteria usually possess a numberofTwo-Component Systems (TCSs), rang- ing from a few to over 100. InE. coli, 29 histidine kinases, 32 response regulators, and 1histidine-containing phosphor transmitter (HPt) domain have been found by analyses ofthe K-12 genome. Several examples ofin vitro and in vivo cross-talks and signal transductioncascadesbetweenTCSs inE. coli have beenreported,which suggests the existence ofa TCS network (Chapter 1). Interactions among different TCSs enable one system to respond to multiple signals, which is important for bacteria to minutely adjust themselves to complex environmental changes. Such interactions are found or predicted in various bacteria in this book. Many ofthese interactions might be connected by small proteins such as B1500(Chapter 1)and PmrD (Chapter2). More examplesofsuch proteins should be identified in the near future in order to fill-in the missing parts ofthe bacterial signal transduction network, a new paradigm that is increasingly recognized as the signal transduction pathway in bacterial cells. For drug discovery, this pathway is consideredas important as the signal transductionpathway in animal cells (Chapters 15 and 16).
Spirochetes comprise a fascinating group of bacteria. Although diverse in terms of their habitat, ecology and infectivity for vertebrate and non-vertebrate hosts, they are often considered together because of their similar cellular morphologies. This volume brings together an international group of experts to provide essential insights into spirochete biology, with an emphasis on recent advances made possible by the availability of genome sequences. As such, it offers a valuable resource for microbiologists and other scientists with an interest in spirochete biology.
A cutting-edge collection of basic and state-of-the-art methods optimized for investigating the molecular biology of this class of retrovirus. These readily reproducible techniques range from methods for the isolation and detection of human retroviruses to cutting-edge methods for exploring the interplay between the viruses and the host. Here, the researcher will find up-to-date techniques for the isolation and propagation of HIV, HTLV, and foamy virus from a variety of sources. There are also assays for determining the cell tropism of HIV-1, the coreceptor usage of HIV-1, and human gene expression with HIV-1 infection by microarrays, as well as for phenotyping HIV-1 infected monocytes and examining their fitness. Highlights include the detection and quantification of HIV-1 in resting CD4+, a new cloning system for making recombinent virus, cDNA microarrays, and the determination of genetic polymorphisms in two recently identified HIV-1 co-factors that are critical for HIV-1 infection.
Milton Taylor, Indiana University, offers an easy-to-read and fascinating text describing the impact of viruses on human society. The book starts with an analysis of the profound effect that viral epidemics had on world history resulting in demographic upheavals by destroying total populations. It also provides a brief history of virology and immunology. Furthermore, the use of viruses for the treatment of cancer (viral oncolysis or virotherapy) and bacterial diseases (phage therapy) and as vectors in gene therapy is discussed in detail. Several chapters focus on viral diseases such as smallpox, influenza, polio, hepatitis and their control, as well as on HIV and AIDS and on some emerging viruses with an interesting story attached to their discovery or vaccine development. The book closes with a chapter on biological weapons. It will serve as an invaluable source of information for beginners in the field of virology as well as for experienced virologists, other academics, students, and readers without prior knowledge of virology or molecular biology.
The aim of Avian Influenza Virus, Second Edition is to provide the essential methods used in working with animal influenza viruses, and to compile more advanced information that will guide the user in designing influenza studies. Influenza A viruses are among the most important pathogens for humans, food animals and companion animals. Research and diagnostics with animal influenza viruses are critical to animal health and it should be recognized that the needs and goals of animal agriculture and veterinary medicine are not always the same as those of public health. This volume sorts out the differences in the structure of the poultry, swine and equine industries, the biological differences of influenza virus from each animal group, and provides host, strain and lineage specific guidance and procedures. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls.Authoritative and accessible, Avian Influenza Virus, Second Edition seeks to serve both professionals and novices with its well-honed methodologies in an effort to further our knowledge of these important pathogens.
The notion that contaminated environments in hospital settings significantly contribute to the risk of an individual acquiring an infection while hospitalized is continuously gaining recognition by the medical community. There is a clear correlation between the environmental bioburden present in a clinical setting and the risk of patients acquiring an infection. Thus using self-disinfecting surfaces can be a very important adjunct in the fight against nosocomial pathogens. This book reviews the increasing evidence that contaminated non-intrusive soft and hard surfaces located in the clinical surroundings are a source of nosocomial pathogens and focuses on the utility of copper containing materials in reducing bioburden and fighting hospital acquired infections. It also reviews other biocidal surface alternatives and the economics of using biocidal surfaces in a hospital environment. Finally, it discusses the pros and cons of existent disinfection modalities other than biocidal surfaces.
Implications of Resource-Ratio Theory for Microbial Ecology; V.H. Smith. 13C Tracer Methodology in Microbial Ecology with Special Reference to Primary Production Processes in Aquatic Environments; T. Hama, et al. Sex in Ciliates; F. Dini, D. Nyberg. Microbial Ecology in Lake Ciso; C. PedroAlio, R. Guerrero. Biological Activities of Symbiotic and Parasitic Protists in Low Oxygen Environments; A.G. Williams, D. Lloyd. Polymorphism in Bacteria; P.B. Rainey, et al. Decomposition of Shoots of a Saltmarsh Grass; S.Y. Newell. Dynamics of Autotrophic Picoplankton in Marine and Freshwater Ecosystems; T. Weisse. Bacterial Growth Rates and Production As Determined by [3HMethyl]thymidine? R.D. Robarts, T. Zohary. Index.
The currently available means of combating fungal infections are weak and clumsy. The application of fungal genomics offers an unparalleled opportunity to develop novel antifungal drugs. Interestingly, several novel antifungal drug targets have already been identified and validated. However, it is premature to expect a novel antifungal agent in clinical setting as drug discovery programs are still in their infancy. In addition to classical and genomic approaches to drug discovery, treasure trove based on natural products and phytomedicine can provide a multitude of alternative modes of combating fungal infection. This book incisively addresses essential topics on various aspects pertaining to fungal diseases in human and animals, their reservoir, fungal pathogenesis, their management and recent advances in their treatment. Issues of antifungal drug toxicity, especially nephrotoxicity, are also discussed. The development of resistance in fungal pathogens, including multidrug resistance and its mechanism, is dealt with in two chapters. Diverse diagnostic approaches to fungal infections are also reviewed. The combinational drug strategies used in combating invasive fungal infections are addressed in detail. The management of pulmonary mycoses in stem cell transplantation is also given special focus. Novel antifungal drugs (synthetic and herbal), fungal vaccines, and metabolic pathways as drug targets are discussed in detail in three different chapters. Subsequently the roles of innate immunity, cytokine therapy and immunomodulators in the treatment of fungal infections are elaborated upon. As novel drug delivery systems have a great potential for modifying the pharmacokinetics of medications, the last chapter takes this fact into consideration in its examination of state-of-the-art delivery systems in controlling fungal infections.
The study of viruses necessarily involves dissecting the intimate details of cellular pathways. Viruses have often been employed as tools in studying cellular pathways, as was done by early retrovirologists such as Peyton Rous in attempting to understand the mechanism of cellular transformation and oncogenesis. On the other side of the coin, virologists seek to de?ne those cellular elements interacting intimatelywiththeir virus ofinterestinorder to better understand viral replication itself, and in some cases to develop antiviral strategies. It is in the intersection of virology and cell biology that many of us ?nd the most rewarding aspects of our research. When a new discovery yields insights into basic cellular mechanisms and presents new targets for int- vention to ?ght a serious pathogen, the impact can be high and the excitement intense. HIV has been no exception to the rule that viruses reveal many basic aspects of cellular biology. In recent years, in part because of the importance of HIV as a major cause of human suffering, numerous cellular processes have been elucidated through work on processes or proteins of this human retrovirus. The excitement in this ?eld is especially well illustrated by the discovery of new innate means of resisting viral replication, such as the work on APOBEC3G, TRIM5a, and BST-2/ tetherin presented in this volume.
This two-volume work covers the molecular and cell biology, genetics and evolution of influenza viruses, the pathogenesis of infection, resultant host innate and adaptive immune response, prevention of infection through vaccination and approaches to the therapeutic control of infection.. Experts at the forefront of these areas provide critical assessments with regard to influenza virology, immunology, cell and molecular biology, and pathogenesis. Volume I provides overviews of the latest findings on molecular determinants of viral pathogenicity, virus entry and cell tropism, pandemic risk assessment, transmission and pathogenesis in animal species, viral evolution, ecology and antigenic variation, while Volume II focuses on the role of innate and adaptive immunity in pathogenesis, development of vaccines and antivirals.
Since their discovery in the 1960s, methicillin-resistant S. aureus (MRSA) strains continue to present unique challenges to clinicians, microbiologists, and molecular biologists around the world. These organisms are typically resistant to several other antimicrobial agents, including aminoglycosides, chloramphenicol, clindamycin, fluoroquinolones and macrolides and are susceptible only to vancomycin. In fact there is increasing evidence that this susceptibility will soon disappear. In this book, internationally renowned authors comprehensively review all aspects of MRSA research. Topics covered include strategies for the detection and typing of MRSA strains, epidemiological characterisation, molecular evolution of MRSA, vancoymcin resistant S. aureus, mechanisms of methicillin resistance, virulence mechanisms in MRSA pathogenesis, recommended treatment of MRSA infections, and options for the prevention and control of MRSA infections.
Giardia duodenalis (=G. lamblia), Entamoeba histolytica, Cryptosporidium parvum and Cyclospora cayetanensis are more than just a mouthful for most who might encounter them. These protozoan parasitic agents contribute significantly to the staggering caseload of diarrheal disease morbidity encountered in developing world nations. Compounding the issue of their mere presence is the fact that standard ova and parasite exams frequently do not detect these infections. Detectable stages may be shed intermittently or require specialized staining procedures. Added to this is the often large number of asymptomatic carriers who serve as reservoirs for infecting others. These parasites are also not strangers to more developed nations, having responsibility for both small and large-scale disease outbreaks. In such settings they may be even more difficult to detect simply because they are frequently overlooked in the grand scheme of disease causing possibilities. They share common features; all are Protozoa, all possess trophic stages that inhabit the gastrointestinal tract, all have the ability to produce disease and in some instances death, and all produce environmentally stable cysts or oocysts, which ensure their transmissibility. In other ways, these organisms are profoundly different. Giardia is a flagellate that inhabits the gut lumen in close association with enterocytes. Entamoeba is an amoeba that preferentially inhabits the mucosal region of the gut lumen, but which may, under certain circumstances, become invasive. Cryptosporidium and Cyclospora are obligate intracellular coccidians, each taking up a unique niche within their respective host enterocytes.
Nanotechnology is a collective term describing a broad range of relatively novel topics. Scale is the main unifying theme, with nanotechnology being concerned with matter on the nanometer scale. A quintessential tenet of nanotechnology is the precise self-assembly of nanometer-sized components into ordered devices. Nanotechnology seeks to mimic what nature has achieved, with precision at the nanometer level down to the atomic level. Nanobiotechnology, a division of nanotechnology, involves the exploitation of biomaterials, devices or methodologies in the nanoscale. In recent years a set of b- molecules has been studied and utilized. Virus particles are natural nanomaterials and have recently received attention for their tremendous potential in this field. The extensive study of viruses as pathogens has yielded detailed knowledge about their biological, genetic, and physical properties. Bacterial viruses (bacte- ophages), plant and animal eukaryotic viruses, and viruses of archaea have all been characterized in this manner. The knowledge of their replicative cycles allows manipulation and tailoring of particles, relying on the principles of self-assembly in infected hosts to build the base materials. The atomic resolution of the virion structure reveals ways in which to tailor particles for higher-order functions and assemblies.
Sendai virus (SeV) is not just a mouse pathogen but is evolving into a cutting-edge component of biotechnology. SeV reverse genetics originating from a pure academic need to settle long-held questions in the biology and pathogenicity of nonsegmented negative strand RNA viruses (Mononegavirales) is about to bear the impressive fruit of multipurpose cytoplasmic (non-integrating) RNA vectors. This book brings together in one source the SeV biology revealed by conventional approaches and reverse genetics, the methods to construct the first-generation SeV vector and to generate safer versions, and the applications in medical settings that have left or are about to leave the laboratory bench. The applications, which already are diverse and have high medical impact, include use as vaccine vectors against AIDS and respiratory virus infections, creation of BioKnife to resect malignant tumors, induction of "footprint (transgene) free" pluripotent stem cells, and gene therapy for peripheral arterial disease. These achievements-which are just a few of many examples-were attainable only after rigorously incorporating the rich knowledge of SeV biology that has accumulated during the several decades since the discovery of the virus. Application of SeV vector is certain to expand greatly because of its extremely high performance in transgene expression and its remarkable target cell breadth.
This comprehensive, interdisciplinary book covers different aspects of relevant human pathogens and commensals. The ongoing development of (meta-)genomic, transcriptomic, proteomic and bioinformatic analyses of pathogenic and commensal microorganisms and their host interaction provides a comprehensive introduction to the microbiological analysis of host-microbe interplay and its consequences for infection or commensalism.
John Walker and Ralph Rapley have collected a wide-ranging group of molecular and biochemical techniques that are the most frequently used in medical and clinical research, especially diagnostics. The authors-well-established investigators who run their own research programs and use the methods on a regular basis-outline the practical procedures for using them and describe a variety of pertinent applications. Among the technologies presented are southern and western blotting, electrophoresis, PCR, cDNA and protein microarrays, liquid chromatography, in situ hybridization, karyotyping, flow cytometry, bioinformatics, genomics, and ribotyping. The applications include assays for mutation detection, mRNA analysis, chromosome translocations, inborn errors of metabolism, protein therapeutics, and gene therapy.
Multiple demographic or economic parameters contribute to the origin of emerging infections, for example: poverty, urbanization, climate change, conflicts and population migrations. All these factors are a challenge to assess the impact (present and future) of parasitic diseases on public health. The intestine is a major target of these infections; it is a nutrient-rich environment harbouring a complex and dynamic population of 100 trillion microbes: the microbiome. Most researches on the microbiome focus on bacteria, which share the gut ecosystem with a population of uni- and multi cellular eukaryotic organisms that may prey on them. Our interest focuses on the families of eukaryotic microbes inhabiting the intestine, called "intestinal eukaryome", that include fungi, protists and helminths. Knowledge on the reciprocal influence between the microbiome and the eukaryome, and on their combined impact on homeostasis and intestinal diseases is scanty and can be considered as an important emerging field. Furthermore, the factors that differentiate pathogenic eukaryotes from commensals are still unknown. This book presents an overview of the science presented and discussed in the First Eukaryome Congress held from October 16th to 18th, 2019 at the Pasteur Institute in Paris. This book covers the following topics: Phylogenetic, prevalence, and diversity of intestinal eukaryotic microbes; and their (still enigmatic) historical evolution and potential contributions to mucosal immune homeostasis. Integrative biology to study the molecular cell biology of parasite-host interactions and the multiple parameters underlining the infectious process. The exploitation of tissue engineering and microfluidics to establish three-dimensional (3D) systems that help to understand homeostasis and pathological processes in the human intestine.
This book is a collection of articles written by prominent scientists who gathered in the city of Recife, Brazil, 23-27 October 2010, celebrating the 10th International Symposium on Yersinia. The event is held every four years in a different country and for the Yersinia 2010, an interesting and updated program covering advances in research in Yersiniae was organized. The major advances achieved over the past four years since the last symposium held in Lexington, USA in 2006 were divided into eight chapters: Epidemiology, Clinical, Diagnostic and Therapeutic aspects; Ecology and Modeling; Genomic/Transcriptomics and Large Scale Population; Immune Response and Vaccine; Pathogenesis and Pathogenicity Factors; Cellular Yersiniology; Bacterial Structure and Metabolism: Roles in Pathogenesis and Bacterial Life Style. The purpose of the book is to extend cutting edge knowledge on Yersinia discussed during the 10th International Symposium. |
![]() ![]() You may like...
Sitting Pretty - White Afrikaans Women…
Christi van der Westhuizen
Paperback
![]()
Extremisms In Africa
Alain Tschudin, Stephen Buchanan-Clarke, …
Paperback
![]()
Into A Raging Sea - Great South African…
Tony Weaver, Andrew Ingram
Paperback
![]() R330 Discovery Miles 3 300
|