![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > Meteorology
The sixth edition of a bestseller, Air Quality provides students with a comprehensive overview of air quality, the science that continues to provide a better understanding of atmospheric chemistry and its effects on public health and the environment, and the regulatory and technological management practices employed in achieving air quality goals. Maintaining the practical approach that has made previous editions popular, the chapters have been reorganized, new material has been added, less relevant material has been deleted, and new images have been added, particularly those from Earth satellites.
Grasslands are the most extensive terrestrial biome on Earth and are critically important for forage, biodiversity, and ecosystem services. This book brings together an international team of researchers to review scientific knowledge of the effects of climate change on world grasslands, a process we are only just starting to understand. Part I assesses how climate change will impact on the distribution of grasslands, as well as production, biogeochemical cycling and ecosystem services. Part II considers the consequences for the spread of invasive species, demographic change, trophic-level relationships, soil biota, and evolutionary change within grassland biodiversity. Part III proposes how ecologists can respond to climate change effects, focusing on grazing systems, cultural ecology, range management, and restoration. The concluding chapter sets grasslands in the context of the Anthropocene era and identifies the vital research and conservation needs for grassland ecosystems to remain environmentally sustainable under climate change.
In recent decades, great progress has been made in our understanding of zonal jets across many subjects - atmospheric science, oceanography, planetary science, geophysical fluid dynamics, plasma physics, magnetohydrodynamics, turbulence theory - but communication between researchers from different fields has been weak or non-existent. Even the terminology in different fields may be so disparate that researchers working on similar problems do not understand each other. This comprehensive, multidisciplinary volume will break cross-disciplinary barriers and aid the advancement of the subject. It presents a state-of-the-art summary of all relevant branches of the physics of zonal jets, from the leading experts. The phenomena and concepts are introduced at a level accessible to beginning graduate students and researchers from different fields. The book also includes a very extensive bibliography.
This book provides an essential overview of wind science and engineering, taking readers on a journey through the origins, developments, fundamentals, recent advancements and latest trends in this broad field. Along the way, it addresses a diverse range of topics, including: atmospheric physics; meteorology; micrometeorology; climatology; the aerodynamics of buildings, aircraft, sailing boats, road vehicles and trains; wind energy; atmospheric pollution; soil erosion; snow drift, windbreaks and crops; bioclimatic city-planning and architecture; wind actions and effects on structures; and wind hazards, vulnerability and risk. In order to provide a comprehensive overview of wind and its manifold effects, the book combines scientific, descriptive and narrative chapters. The book is chiefly intended for students and lecturers, for those who want to learn about the genesis and evolution of this topic, and for the multitude of scholars whose work involves the wind.
This book discusses instrumentation used in meteorological surface systems, both on the synoptic scale and the mesoscale, and the instrumentation used in upper air soundings. The text includes material on first- and second-order differential equations as applied to instrument dynamic performance, and required solutions are developed. Sensor physics are emphasized in order to explain how sensors work and to explore the strengths and weaknesses of each design type. The book is organized according to sensor type and function (temperature, humidity, and wind sensors, for example), though several unifying themes are developed for each sensor. Functional diagrams are used to portray sensors as a set of logical functions, and static sensitivity is derived from a sensor's transfer equation, focusing attention on sensor physics and on ways in which particular designs might be improved. Sensor performance specifications are explored, helping to compare various instruments and to tell users what to expect as a reasonable level of performance. Finally, the text examines the critical area of environmental exposure of instruments. In a well-designed, properly installed, and well-maintained meteorological measurement system, exposure problems are usually the largest source of error, making this chapter one of the most useful sections of the book.
Global climate change is a topic of continuously growing interest. As more international treaties come into force, media coverage has increased and many universities are now starting to conduct courses specifically on climate change laws and policies. This textbook provides a survey of the international law on climate change, explaining how significant international agreements have sought to promote compliance with general norms of international law. Benoit Mayer provides an account of the rules agreed upon through lengthy negotiations under the United Nations Framework Convention on Climate Change (UNFCCC) and multiple other forums on mitigation, geoengineering, adaptation, loss and damage, and international support. The International Law on Climate Change is suitable for undergraduate and graduate students studying climate, environmental or international law. It is supported by a suite of online resources, available at www.internationalclimatelaw.com, featuring regularly updated lists of complementary materials, weblinks and regular updates for each chapter.
This book include research studies which deal with the attempts to address new solutions for challenges in geotechnical engineering such as characterization of new materials, application of glass fibre, geotextile fabric and permeable concrete, new numerical methods for traditional problems and some other geotechnical issues that are becoming quite relevant in today's world. The book adds to the geotechnical engineering field which still bears lots of big challenges. It contributes to make the civil infrastructures more sustainable using new technologies and materials that have been proposed and applied in various fields. Papers were selected from the 5th GeoChina International Conference 2018 - Civil Infrastructures Confronting Severe Weathers and Climate Changes: From Failure to Sustainability, held on July 23 to 25, 2018 in HangZhou, China.
Science now reveals the true cause of the dam breach flood that destroyed Johnstown in 1889. The tragic loss of more than 2200 lives was preventable; the initial investigation of the flood was hijacked, delayed, and distorted by powerful members of the industrial elite. This book bridges the gap between history and science, reexamining eyewitness accounts of the flood and historic documents about the investigation, and applying new LiDAR, GPS, and hydraulic studies to solve the mystery - what caused the Great Flood of 1889? The book includes a notable chapter on the "sister" of the South Fork Dam, "The Forgotten Dam" at Hollidaysburg, PA.
This book presents new research studies dealing with the attempts made by the scientists and practitioners to address some key engineering issues in tunneling engineering, geotechnical engineering, and municipal sustainability issues that are becoming quite relevant in today's world. With high urbanization rates, advancement in technologies, difficulties in construction of subway tunnel in soft marine clay deposits, and severe ground subsidence due to excessive groundwater withdrawal pose many challenges in their management. Papers were selected from the 5th GeoChina International Conference 2018 - Civil Infrastructures Confronting Severe Weathers and Climate Changes: From Failure to Sustainability, held on July 23 to 25, 2018 in HangZhou, China.
This book is a thorough introduction to climate science and global change. The author is a geologist who has spent much of his life investigating the climate of Earth from a time when it was warm and dinosaurs roamed the land, to today's changing climate. Bill Hay takes you on a journey to understand how the climate system works. He explores how humans are unintentionally conducting a grand uncontrolled experiment which is leading to unanticipated changes. We follow the twisting path of seemingly unrelated discoveries in physics, chemistry, biology, geology, and even mathematics to learn how they led to our present knowledge of how our planet works. He explains why the weather is becoming increasingly chaotic as our planet warms at a rate far faster than at any time in its geologic past. He speculates on possible future outcomes, and suggests that nature itself may make some unexpected course corrections. Although the book is written for the layman with little knowledge of science or mathematics, it includes information from many diverse fields to provide even those actively working in the field of climatology with a broader view of this developing drama. Experimenting on a Small Planet is a must read for anyone having more than a casual interest in global warming and climate change - one of the most important and challenging issues of our time. This new edition includes actual data from climate science into 2021. Numerous Powerpoint slides can be downloaded to allow lecturers and teachers to more effectively use the book as a basis for climate change education.
Malcolm Walker tells the story of the UK's national meteorological service from its formation in 1854 with a staff of four to its present position as a scientific and technological institution of national and international importance with a staff of nearly two thousand. The Met Office has long been at the forefront of research into atmospheric science and technology and is second to none in providing weather services to the general public and a wide range of customers around the world. The history of the Met Office is therefore largely a history of the development of international weather prediction research in general. In the modern era it is also at the forefront of the modelling of climate change. This volume will be of great interest to meteorologists, atmospheric scientists and historians of science, as well as amateur meteorologists and anyone interested generally in weather prediction.
Based on his over forty years of research and teaching, John C. Wyngaard's textbook is an excellent up-to-date introduction to turbulence in the atmosphere and in engineering flows for advanced students, and a reference work for researchers in the atmospheric sciences. Part I introduces the concepts and equations of turbulence. It includes a rigorous introduction to the principal types of numerical modeling of turbulent flows. Part II describes turbulence in the atmospheric boundary layer. Part III covers the foundations of the statistical representation of turbulence and includes illustrative examples of stochastic problems that can be solved analytically. The book treats atmospheric and engineering turbulence in a unified way, gives clear explanation of the fundamental concepts of modeling turbulence, and has an up-to-date treatment of turbulence in the atmospheric boundary layer. Student exercises are included at the ends of chapters, and worked solutions are available online for use by course instructors.
Presenting a comprehensive discussion of general circulation models of the atmosphere, this book covers their historical and contemporary development, their societal context, and current efforts to integrate these models into wider Earth-system models. Leading researchers provide unique perspectives on the scientific breakthroughs, overarching themes, critical applications, and future prospects for atmospheric general circulation models. Key interdisciplinary links to other subject areas such as chemistry, oceanography and ecology are also highlighted. This book is a core reference for academic researchers and professionals involved in atmospheric physics, meteorology and climate science, and can be used as a resource for graduate-level courses in climate modeling and numerical weather prediction. Given the critical role that atmospheric general circulation models are playing in the intense public discourse on climate change, it is also a valuable resource for policy makers and all those concerned with the scientific basis for the ongoing public-policy debate.
Many climatic extremes around the globe, such as severe droughts and floods, can be attributed to the periodic warming of the equatorial Pacific sea surface, termed the El Nino or Southern Oscillation (ENSO). Advances in our understanding of ENSO, in which Edward S. Sarachik and Mark A. Cane have been key participants, have led to marked improvements in our ability to predict its development months or seasons, allowing adaptation to global impacts. This book introduces basic concepts and builds to more detailed theoretical treatments. Chapters on the structure and dynamics of the tropical ocean and atmosphere place ENSO in a broader observational and theoretical context. Chapters on ENSO prediction, past and future, and impacts, introduce broader implications of the phenomenon. This book provides an introduction to all aspects of this most important mode of global climate variability, for research workers and students of all levels in climate science, oceanography and related fields.
This volume presents eighteen case studies of natural disasters from Australia, Europe, North America and developing countries. By comparing the impacts, it seeks to identify what moves people to adapt, which adaptive activities succeed and which fail, and the underlying reasons, and the factors that determine when adaptation is required and when simply bearing the impact may be the more appropriate response. Much has been written about the theory of adaptation and high-level, especially international, policy responses to climate change. This book aims to inform actual adaptation practice - what works, what does not, and why. It explores some of the lessons we can learn from past disasters and the adaptation that takes place after the event in preparation for the next. This volume will be especially useful for researchers and decision makers in policy and government concerned with climate change adaptation, emergency management, disaster risk reduction, environmental policy and planning.
Advances in nonlinear dynamics, especially modern multifractal cascade models, allow us to investigate the weather and climate at unprecedented levels of accuracy. Using new stochastic modeling and data analysis techniques, this book provides an overview of the nonclassical, multifractal statistics. By generalizing the classical turbulence laws, emergent higher-level laws of atmospheric dynamics are obtained and are empirically validated over time-scales of seconds to decades and length-scales of millimetres to the size of the planet. In generalizing the notion of scale, atmospheric complexity is reduced to a manageable scale-invariant hierarchy of processes, thus providing a new perspective for modeling and understanding the atmosphere. This synthesis of state-of-the-art data and nonlinear dynamics is systematically compared with other analyses and global circulation model outputs. This is an important resource for atmospheric science researchers new to multifractal theory and is also valuable for graduate students in atmospheric dynamics and physics, meteorology, oceanography and climatology.
Mounting evidence that human activities are substantially modifying the Earth's climate brings a new imperative to the study of the ocean's large-scale circulation. This textbook provides a concise but comprehensive introduction to the theory of large-scale ocean circulation, as it is currently understood and established. Students and instructors will benefit from the carefully chosen chapter-by-chapter exercises. This advanced textbook is invaluable for graduate students and researchers in the fields of oceanic, atmospheric and climate sciences, and other geophysical scientists, as well as physicists and mathematicians with a quantitative interest in the planetary fluid environment.
Measurement, analysis and modeling of extreme precipitation events linked to floods is vital in understanding changing climate impacts and variability. This book provides methods for assessment of the trends in these events and their impacts. It also provides a basis to develop procedures and guidelines for climate-adaptive hydrologic engineering. Academic researchers in the fields of hydrology, climate change, meteorology, environmental policy and risk assessment, and professionals and policy-makers working in hazard mitigation, water resources engineering and climate adaptation will find this an invaluable resource. This volume is the first in a collection of four books on flood disaster management theory and practice within the context of anthropogenic climate change. The others are: Floods in a Changing Climate: Hydrological Modeling by P. P. Mujumdar and D. Nagesh Kumar, Floods in a Changing Climate: Inundation Modeling by Giuliano Di Baldassarre and Floods in a Changing Climate: Risk Management by Slodoban Simonovic.
Various modeling methodologies are available to aid planning and operational decision making: this book synthesises these, with an emphasis on methodologies applicable in data scarce regions, such as developing countries. Problems included in each chapter, and supported by links to available online data sets and modeling tools, engage the reader with practical applications of the models. Academic researchers in the fields of hydrology, climate change, and environmental science and hazards, and professionals and policy-makers working in hazard mitigation, remote sensing and hydrological engineering will find this an invaluable resource. This volume is the second in a collection of four books on flood disaster management theory and practice within the context of anthropogenic climate change. The others are: Floods in a Changing Climate: Extreme Precipitation by Ramesh Teegavarapu, Floods in a Changing Climate: Inundation Modelling by Giuliano Di Baldassarre and Floods in a Changing Climate: Risk Management by Slodoban P. Simonovic.
Flood risk management is presented in this book as a framework for identifying, assessing and prioritizing climate-related risks and developing appropriate adaptation responses. Rigorous assessment is employed to determine the available probabilistic and fuzzy set-based analytic tools, when each is appropriate and how to apply them to practical problems. Academic researchers in the fields of hydrology, climate change, environmental science and policy and risk assessment, and professionals and policy-makers working in hazard mitigation, water resources engineering and environmental economics, will find this an invaluable resource. This volume is the fourth in a collection of four books on flood disaster management theory and practice within the context of anthropogenic climate change. The others are: Floods in a Changing Climate: Extreme Precipitation by Ramesh Teegavarapu, Floods in a Changing Climate: Hydrologic Modeling by P. P. Mujumdar and D. Nagesh Kumar and Floods in a Changing Climate: Inundation Modelling by Giuliano Di Baldassarre.
Wave breaking represents one of the most interesting and challenging problems for fluid mechanics and physical oceanography. Over the last fifteen years our understanding has undergone a dramatic leap forward, and wave breaking has emerged as a process whose physics is clarified and quantified. Ocean wave breaking plays the primary role in the air-sea exchange of momentum, mass and heat, and it is of significant importance for ocean remote sensing, coastal and ocean engineering, navigation and other practical applications. This book outlines the state of the art in our understanding of wave breaking and presents the main outstanding problems. It is a valuable resource for anyone interested in this topic, including researchers, modellers, forecasters, engineers and graduate students in physical oceanography, meteorology and ocean engineering. |
You may like...
Handbook of Research on Edge Computing…
G. Nagarajan, R I Minu
Hardcover
R7,006
Discovery Miles 70 060
Artificial Intelligence Applications in…
Pantea Keikhosrokiani, Moussa Pourya Asl
Hardcover
R7,997
Discovery Miles 79 970
Intelligent Edge Computing for Cyber…
D. Jude Hemanth, Bb Gupta, …
Paperback
R2,954
Discovery Miles 29 540
Creativity in Computing and DataFlow…
Suyel Namasudra, Veljko Milutinovic
Hardcover
R4,204
Discovery Miles 42 040
|