Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Earth & environment > Earth sciences > Meteorology
This book deals with the attempts made by the scientists, researchers and practitioners to address different emerging issues in transportation and geotechnical engineering. Papers focus on the following: (i) polymer-based dust suppressant,(ii) cement concrete materials, (iii) pavement preservation techniques, (iv) frost front in a cold-region circular tunnel, (v) metro station in non-cemented soil, (vi) seismic-liquefaction, (vii) mechanical responses of asphalt pavement at bridge approach, (viii) warm mix asphalt, and (ix) behavior of pile foundation. This volume is useful for the researchers and practitioners who work in the area transportation and geotechincal engineering. Papers were selected from the 5th GeoChina International Conference 2018 - Civil Infrastructures Confronting Severe Weathers and Climate Changes: From Failure to Sustainability, held on July 23 to 25, 2018 in HangZhou, China.
The book presents a compilation of studies regarding applied geomechanics, mining, and excavation analysis and simulation. The material is suitable for presentation to senior undergraduate and post-graduate students in both mining and geological engineering. It should also be of interest to students of other aspects of Geomechanics and, notably, engineering geologists interested in mining and underground excavation design. Practising mining engineers and rock mechanics engineers involved in mine design may use the book profitably to obtain an appreciation of the current state of engineering knowledge in their area of specialisation. Papers were selected from the 5th GeoChina International Conference on Civil Infrastructures Confronting Severe Weathers and Climate Changes: From Failure to Sustainability, held in July 23-25, 2018 in Hang Zhou, China.
This book include research studies which deal with the attempts to address new solutions for challenges in geotechnical engineering such as characterization of new materials, application of glass fibre, geotextile fabric and permeable concrete, new numerical methods for traditional problems and some other geotechnical issues that are becoming quite relevant in today's world. The book adds to the geotechnical engineering field which still bears lots of big challenges. It contributes to make the civil infrastructures more sustainable using new technologies and materials that have been proposed and applied in various fields. Papers were selected from the 5th GeoChina International Conference 2018 - Civil Infrastructures Confronting Severe Weathers and Climate Changes: From Failure to Sustainability, held on July 23 to 25, 2018 in HangZhou, China.
This book presents new studies dealing with the attempts made by the scientists and practitioners to address contemporary issues in pavement engineering such as aging and modification of asphalt binders, performance evaluation of warm mix asphalt, and mechanical-based pavement structure analysis, etc.. Asphalt binder and mixture have been widely used to construct flexible pavements. Mechanical and Chemical characterizations of asphalt materials and integration of these properties into pavement structures and distresses analysis are of great importance to design a sustainable flexible pavement. This book includes discusses and new results dealing with these issues. Papers were selected from the 5th GeoChina International Conference 2018 - Civil Infrastructures Confronting Severe Weathers and Climate Changes: From Failure to Sustainability, held on July 23 to 25, 2018 in HangZhou, China.
This book examines how the state of underground structures can be determined with the assistance of force, deformation and energy. It then analyzes mechanized shield methods, the New Austrian tunneling method (NATM) and conventional methods from this new perspective. The book gathers a wealth of cases reflecting the experiences of practitioners and administrators alike. Based on statistical and engineering studies of these cases, as well as lab and field experiments, it develops a stability assessment approach incorporating a stable equilibrium, which enables engineers to keep the structure and surrounding rocks safe as long as the stable equilibrium and deformation compliance are maintained. The book illustrates the implementation of the method in various tunneling contexts, including soil-rock mixed strata, tunneling beneath operating roads, underwater tunnels, and tunnel pit excavation. It offers a valuable guide for researchers, designers and engineers, especially those who are seeking to understand the underlying principles of underground excavation.
This book begins with the dynamic characteristics of the covering layerbedrock type slope, containing monitoring data of the seismic array, shaking table tests, numerical analysis and theoretical derivation. Then it focuses on the landslide mechanism and assessment method. It also proposes a model that assessing the hazard area based on the field investigations. Many questions, exercises and solutions are given. Researchers and engineers in the field of Geotechnical Engineering and Anti-seismic Engineering can benefit from it.
This series presents authoritative invited summaries of research on atmospheric chemistry in a changing world. These range from comprehensive reviews of major subject areas to focused accounts by individual research groups. The topics may include laboratory studies, field measurements, in situ monitoring and remote sensing, studies of composition, chemical modeling, theories of atmospheric chemistry and climate, feedback mechanisms, emissions and deposition, biogeochemical cycles, and the links between atmospheric chemistry and the climate system at large.Volume 2 comprises chapters describing research on multiphase chemistry affecting air quality in China, on multiphase chemistry of organic compounds leading to secondary organic aerosol formation, on biogeochemical cycles involving ammonia, on oxidation of aromatic compounds, on reactions of Criegee intermediates (important in oxidation of alkenes), and on laboratory and field measurements of isotopic fractionation in the atmosphere.
This book focuses on the analysis and design of advanced techniques for on-line automatic computational monitoring of pipelines and pipe networks. It discusses how to improve the systems' security considering mathematical models of the flow, historical flow rate and pressure data, with the main goal of reducing the number of sensors installed along a pipeline. The techniques presented in the book have been implemented in digital systems to enhance the abilities of the pipeline network's operators in recognizing anomalies. A real leak scenario in a Mexican water pipeline is used to illustrate the benefits of these techniques in locating the position of a leak. Intended for an interdisciplinary audience, the book addresses researchers and professionals in the areas of mechanical, civil and control engineering. It covers topics on fluid mechanics, instrumentation, automatic control, signal processing, computing, construction and diagnostic technologies.
Changing Climate and Resource Use Efficiency in Plants reviews the efficiencies for resource use by crop plants under different climatic conditions. This book focuses on the challenges and potential remediation methods for a variety of resource factors. Chapters deal with the effects of different climatic conditions on agriculture, radiation use efficiency under various climatic conditions, the efficiency of water and its impact on harvest production under restricted soil moisture conditions, nitrogen and phosphorus use efficiency, nitrogen use efficiency in different environmental conditions under the influence of climate change, and various aspects of improving phosphorus use efficiency. The book provides guidance for researchers engaged in plant science studies, particularly Plant/Crop Physiology, Agronomy, Plant Breeding and Molecular Breeding. In addition, it provides valuable insights for policymakers, administrators, plant-based companies and agribusiness companies.
This book is a collection of papers presented at the International Workshop on Geotechnical Natural Hazards held July 12-15, 2014, in Kitakyushu, Japan. The workshop was the sixth in the series of Japan-Taiwan Joint Workshops on Geotechnical Hazards from Large Earthquakes and Heavy Rainfalls, held under the auspices of the Asian Technical Committee No. 3 on Geotechnology for Natural Hazards of the International Society for Soil Mechanics and Geotechnical Engineering. It was co-organized by the Japanese Geotechnical Society and the Taiwanese Geotechnical Society. The contents of this book focus on geotechnical and natural hazard-related issues in Asia such as earthquakes, tsunami, rainfall-induced debris flows, slope failures, and landslides. The book contains the latest information and mitigation technology on earthquake- and rainfall-induced geotechnical natural hazards. By dissemination of the latest state-of-the-art research in the area, the information contained in this book will help researchers, designers, consultants, government officials, and academicians involved in the mitigation of natural hazards. The findings and other information provided here is expected to contribute toward the development of a new chapter in disaster prevention and mitigation of geotechnical structures.
This contributed volume presents a multi-perspective collection of the latest research findings on oil and gas exploration and imparts insight that can greatly assist in understanding field behavior, design of test programs, and design of field operations. With this book, engineers also gain a powerful guide to the most commonly used numerical simulation methods that aid in reservoir modelling. In addition, the contributors explore development of technologies that allow for cost effective oil and gas exploration while minimizing the impact on our water resources, surface and groundwater aquifers, geological stability of impacted areas, air quality, and infrastructure assets such as roads, pipelines, water, and wastewater networks. Easy to understand, the book identifies equipment and procedural problems inherent to oil and gas operations and provides systematic approaches for solving them.
Integrating information from several areas of engineering geology, hydrogeology, geotechnical engineering, this book addresses the general field of groundwater from an engineering perspective. It covers geological engineering as well as hydrogeological and environmental geological problems caused by groundwater engineering. It includes 10 chapters, i.e., basic groundwater theory, parameter calculation in hydrogeology, prevention of geological problem caused by groundwater, construction dewatering, wellpoint dewatering methods, dewatering wells and drilling, groundwater dewatering in foundation-pit engineering, groundwater engineering in bedrock areas, numerical simulation in groundwater engineering, groundwater corrosion on concrete and steel. Based on up-to-date literature, it describes recent developments and presents several case studies with examples and problems. It is an essential reference source for industrial and academic researchers working in the groundwater field and can also serve as lecture-based course material providing fundamental information and practical tools for both senior undergraduate and postgraduate students in fields of geology engineering, hydrogeology, geotechnical engineering or to conduct related research.
In this spirit, the ATMSS International Workshop "Advances in Laboratory Testing & Modelling of Soils and Shales" (Villars-sur-Ollon, Switzerland; 18-20 January 2017) has been organized to promote the exchange of ideas, experience and state of the art among major experts active in the field of experimental testing and modelling of soils and shales. The Workshop has been organized under the auspices of the Technical Committees TC-101 "Laboratory Testing", TC-106 "Unsaturated Soils" and TC-308 "Energy Geotechnics" of the International Society of Soil Mechanics and Geotechnical Engineering. This volume contains the invited keynote and feature lectures, as well as the papers that have been presented at the Workshop. The topics of the lectures and papers cover a wide range of theoretical and experimental research, including unsaturated behaviour of soils and shales, multiphysical testing of geomaterials, hydro-mechanical behaviour of shales and stiff clays, the geomechanical behaviour of the Opalinus Clay shale, advanced laboratory testing for site characterization and in-situ applications, and soil - structure interactions.
This book presents a selection of the best papers from the HEaRT 2015 conference, held in Lisbon, Portugal, which provided a valuable forum for engineers and architects, researchers and educators to exchange views and findings concerning the technological history, construction features and seismic behavior of historical timber-framed walls in the Mediterranean countries. The topics covered are wide ranging and include historical aspects and examples of the use of timber-framed construction systems in response to earthquakes, such as the gaiola system in Portugal and the Bourbon system in southern Italy; interpretation of the response of timber-framed walls to seismic actions based on calculations and experimental tests; assessment of the effectiveness of repair and strengthening techniques, e.g., using aramid fiber wires or sheets; and modelling analyses. In addition, on the basis of case studies, a methodology is presented that is applicable to diagnosis, strengthening and improvement of seismic performance and is compatible with modern theoretical principles and conservation criteria. It is hoped that, by contributing to the knowledge of this construction technique, the book will help to promote conservation of this important component of Europe's architectural heritage.
This book offers valuable climate policy and climate assessment lessons, depicting what it takes to build a sustained climate assessment process. It explores the third U.S. National Climate Assessment (NCA3) report as compared with previous US national climate assessments, from both a process and content perspective. The U.S. Global Change Research Program is required by law to produce a National Climate Assessment report every four years, and these reports provide a comprehensive evaluation of climate science as well as observed and projected climate impacts on a variety of sectors. As the book describes, a key contribution of the NCA3 approach is a far more deliberate interdisciplinary process, as well as an engagement strategy that brought hundreds of public and private sector stakeholders into the assessment community. Among its most important conceptual contributions was an explicit focus on building the infrastructure to conduct better assessments over time and an experimental approach to analysis of the impacts of climate on cross-sectoral systems and inter-locking and cascading effects across sectors. Readers may explore innovations such as the development of regional climatologies and projections for every region of the US, as well as the development of the Global Change Information System. The book also highlights the need for decision-makers to be part of the assessment process, in order for assessment findings to be truly useful from a decision-maker's perspective. Many lessons have been learned by the NCA3 authors that can be useful in future assessments and adaptation processes, both within the US and internationally. This book passes on such lessons and includes an evaluation of the role of state climate assessments in ongoing national assessment processes.
This is the first book to revisit geotechnical site characterization from a probabilistic point of view and provide rational tools to probabilistically characterize geotechnical properties and underground stratigraphy using limited information obtained from a specific site. This book not only provides new probabilistic approaches for geotechnical site characterization and slope stability analysis, but also tackles the difficulties in practical implementation of these approaches. In addition, this book also develops efficient Monte Carlo simulation approaches for slope stability analysis and implements these approaches in a commonly available spreadsheet environment. These approaches and the software package are readily available to geotechnical practitioners and alleviate them from reliability computational algorithms. The readers will find useful information for a non-specialist to determine project-specific statistics of geotechnical properties and to perform probabilistic analysis of slope stability.
This book analyzes the issues associated with climate change in the Himalayas. The purpose of choosing the Himalayas as a focus is because it is a particularly fragile mountain system, highly sensitive to climate change impacts, and it contains one of the largest human populations affected by climate change. The book provides extensive data and information regarding the climate history of the Himalayas, and the current effects of climate change on Himalayan weather systems, and on human and animal populations in the region. The book begins with an overview of global climate change with discussions of data trends and international initiatives, then segues into a history of climate changes and weather trends in the Himalayas. Weather systems of the Himalayas, both past and current, are analyzed and detailed through climate models, seasonal observations of weather fronts, and overviews of various climate scenarios. The book then discusses climate change impacts and signat ures specific to the Central Himalayan region, where the largest effects of impacts are observed. Readers will discover analysis presented on water resources, meteorological changes, biodiversity, agriculture and human health along with perspectives of management and policy. This book will appeal to researchers studying climate science, climatology, environmental scientists and policymakers.
This book aims to stimulate new thinking on the roles of river contracts in the protection and management of hydrographic resources and ecosystems and in the sustainable development of dependent territories and communities. Up-to-date information is provided on a range of topics relating to river contracts, including their relevance to implementation of the EU Water Framework Directive on integrated river basin management. The importance of river contracts for innovation in territorial planning and governance is explored with the aid of comparative analysis between France and Italy that encompasses water management policies, legislative frameworks, contents and procedures, and stakeholder rules and participation. This analysis is supported by enlightening case studies in urbanized and rural contexts within the two countries. The book will be of high interest for all who wish to understand the potential of river contracts to create innovative forums for dialogue and knowledge sharing between public/private stakeholders and local communities and to prompt a new form of governance of river ecosystems and territories that is compliant with the subsidiarity principle.
This book describes the latest research advances, innovations, and applications in the field of water management and environmental engineering as presented by leading researchers, engineers, life scientists and practitioners from around the world at the Frontiers International Conference on Wastewater Treatment (FICWTM), held in Palermo, Italy in May 2017. The topics covered are highly diverse and include the physical processes of mixing and dispersion, biological developments and mathematical modeling, such as computational fluid dynamics in wastewater, MBBR and hybrid systems, membrane bioreactors, anaerobic digestion, reduction of greenhouse gases from wastewater treatment plants, and energy optimization. The contributions amply demonstrate that the application of cost-effective technologies for waste treatment and control is urgently needed so as to implement appropriate regulatory measures that ensure pollution prevention and remediation, safeguard public health, and preserve the environment. The contributions were selected by means of a rigorous peer-review process and highlight many exciting ideas that will spur novel research directions and foster multidisciplinary collaboration among different water specialists.
This book provides an introduction to the complex system functions, variability and human interference in ecosystem between the continent and the ocean. It focuses on circulation, transport and mixing of estuarine and coastal water masses, which is ultimately related to an understanding of the hydrographic and hydrodynamic characteristics (salinity, temperature, density and circulation), mixing processes (advection and diffusion), transport timescales such as the residence time and the exposure time. In the area of physical oceanography, experiments using these water bodies as a natural laboratory and interpreting their circulation and mixing processes using theoretical and semi-theoretical knowledge are of fundamental importance. Small-scale physical models may also be used together with analytical and numerical models. The book highlights the fact that research and theory are interactive, and the results provide the fundamentals for the development of the estuarine research.
This study analyzes the spatial-temporal pattern and processes of China's energy-related carbon emissions. Based on extensive quantitative analysis, it outlines the character and trajectory of China's energy-related carbon emissions during the period 1995-2010, examining the distribution pattern of China's carbon emissions from regional and sectoral perspectives and revealing the driving factors of China's soaring emission increase. Further, the book investigates the supply chain carbon emissions (the carbon footprints) of China's industrial sectors. Anthropogenic climate change is one of the most serious challenges currently facing humankind. China is the world's largest developing country, top primary energy consumer and carbon emitter. Achieving both economic growth and environmental conservation is the country's twofold challenge. Understanding the status, features and driving forces of China's energy-related carbon emissions is a critical aspect of attaining global sustainability. This work, for the first time, presents both key findings on and a systematic evaluation of China's carbon emissions from energy consumption. The results have important implications for global carbon budgets and burden-sharing with regard to climate change mitigation. The book will be of great interest to readers around the world, as it addresses a topic of truly global significance.
This book provides concise descriptions of the various solutions of transition curves, which can be used in geometric design of roads and highways. It presents mathematical methods and curvature functions for defining transition curves.
This book highlights the aeolian processes in the desert zone of Kazakhstan and Central Asian Deserts, and analyzes the current status of dust and sand storms in Central Asia and Kazakhstan. It also highlights the analyses, dynamics and long-term observations of storms on the basis of numerous cartographic materials and satellite images. Dust/sand storms are a common and important phenomenon in the arid and semi-arid regions of Kazakhstan and Central Asia as well,especially in its southern parts, where areas are covered by a great variety of deserts and offer a significant source of mineral and salt aerosols. The deserts of Kazakhstan mostly cover lowlands and extend from the eastern coast of the Caspian Sea to the piedmonts of the Tien-Shan Mountain. In Kazakhstan and Central Asia desertification processes due to wind erosion in the form of dust/sand storms were observed in semi-desert and desert landscapes.
This book presents new research studies dealing with the attempts made by the scientists and practitioners to address some key engineering issues in tunneling engineering, geotechnical engineering, and municipal sustainability issues that are becoming quite relevant in today's world. With high urbanization rates, advancement in technologies, difficulties in construction of subway tunnel in soft marine clay deposits, and severe ground subsidence due to excessive groundwater withdrawal pose many challenges in their management. Papers were selected from the 5th GeoChina International Conference 2018 - Civil Infrastructures Confronting Severe Weathers and Climate Changes: From Failure to Sustainability, held on July 23 to 25, 2018 in HangZhou, China.
This book presents new studies by a group of researchers and practitioners to address many geotechnical challenges, based on the state-of-the-art practices, innovative technologies, new research results and case histories in construction and design towards safer infrastructures. The book provides an advancement in technologies to incorporate the impact of global climate change, world's population is rising fast and the rate of urbanization on civil infrastructures. Papers were selected from the 5th GeoChina International Conference 2018 - Civil Infrastructures Confronting Severe Weathers and Climate Changes: From Failure to Sustainability, held on July 23 to 25, 2018 in HangZhou, China. |
You may like...
The Joint Arctic Weather Stations…
Daniel Heidt, P.Whitney Lackenbauer
Hardcover
R2,289
Discovery Miles 22 890
Artificial Intelligence of Things for…
Rajeev Kumar Gupta, Arti Jain, …
Hardcover
R7,039
Discovery Miles 70 390
|