![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Technology: general issues > Nanotechnology
Just as chemistry is a part of our daily lives, functional coatings can be found in almost every object, gadget or device you can see or touch. However, in the last 20 years the advances made in the preparation of different functional coatings with diverse compositions have allowed the development of nanoscale coatings that are more cost-effective and environmentally conscious than traditional coatings. Research Perspectives on Functional Micro- and Nanoscale Coatings highlights critical research on preparation methods, modification, organization, and utilization of functional coatings in micro, nano, and biotechnology. Emphasizing emerging developments and global research perspectives, this publication is a pivotal resource for engineers, researchers, and graduate-level students interested in learning about emerging developments in functional coatings and nanotechnology.
Nanotechnology and molecular computation are two of the fastest advancing areas in recent years. Gaining attention over the past few decades, these fields are steadily becoming cornerstones of our developing culture in the 21st century. Theoretical and Technological Advancements in Nanotechnology and Molecular Computation: Interdisciplinary Gains compiles research in areas where nanoscience and computer science meet. This book explores current and future trends that discus areas such as, cellular nanocomputers, DNA self-assembly, and the architectural design of a nano-brain. The authors of each chapter have provided in-depth insight into the current state of research in nanotechnology and molecular computation as well as identified successful approaches, tools and methodologies in their research.
Neural Regenerative Nanomedicine presents novel, significant, experimental results relating to nanoscience and nanotechnology in neural regeneration. As current research is at the forefront of healing the nervous system, the content in the book focuses on basic, translational and clinical research in neural repair and regeneration. Chapters focus on stem cell biology to advance medical therapies for devastating disorders, the complex, delicate structures that make up the nervous system, and neurodegenerative diseases that cause progressive deterioration, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis and multiple system atrophy.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
Research on nanotechnology has mainly focused on the aspects of synthesis of nanomaterials that have unique chemical, thermal, and mechanical properties applicable to a wide range of applications. A variety of properties and phenomena have been investigated, and many of the studies have been directed toward understanding the properties and applications of nanomaterials. Nanomaterials have properties that are useful for enhancing surface-to-volume ratio, reactivity, strength, and durability. Due to their enhanced chemical and mechanical properties, the nanomaterials play promising roles in enhancing the desulfurization. Nanocomposites for the Desulfurization of Fuels is an essential reference source that discusses the synthesis, properties, and technological developments of nanomaterials and their applications in petroleum. Featuring research on topics such as hybrid materials, catalytic properties, and environmental concerns, this book is ideally designed for chemical engineers, scientists, researchers, academicians, and students in fields that include chemistry, petroleum, materials science, physics, and engineering.
This book includes selected, peer-reviewed contributions from the 2018 International Conference on "Physics and Mechanics of New Materials and Their Applications", PHENMA 2018, held in Busan, South Korea, 9-11 August 2018. Focusing on manufacturing techniques, physics, mechanics, and applications of modern materials with special properties, it covers a broad spectrum of nanomaterials and structures, ferroelectrics and ferromagnetics, and other advanced materials and composites. The authors discuss approaches and methods in nanotechnology; newly developed, environmentally friendly piezoelectric techniques; and physical and mechanical studies of the microstructural and other properties of materials. Further, the book presents a range of original theoretical, experimental and computational methods and their application in the solution of various technological, mechanical and physical problems. Moreover, it highlights modern devices demonstrating high accuracy, longevity and the ability to operate over wide temperature and pressure ranges or in aggressive media. The developed devices show improved characteristics due to the use of advanced materials and composites, opening new horizons in the investigation of a variety of physical and mechanical processes and phenomena.
This book explores the production and applications of biochar. This material is used to remove contaminants from industrial effluent and to reutilize waste sludge in the production of biofuel/bioenergy. The treatment of wastewater and reuse of waste sludge in value added products manufacturing and environmental clean-up is explored. This book provides a roadmap for future strategies for pollution abatement and sustainable development.
Advances in Phytonanotechnology: From Synthesis to Application guides readers through various applications of nanomaterials on plants by presenting the latest research related to nanotechnology and nanomaterials on plant systems. The book focuses on the effects of these applications on plant morphology, physiology, biochemistry, ecology and genetics. Sections cover the impact on plant yield, techniques, a review of positive and negative impacts, and an overview of current policies regarding the use of nanotechnology on plants. Additionally, the book offers insights into the appropriate application of nanoscience to plants and crops for improved outcome and an exploration of their bioavailability and toxicity in the environment.
Microencapsulations may be found in a number of fields like medicine, drug delivery, biosensing, agriculture, catalysis, intelligent microstructures and in many consumer goods. This new edition of Microencapsulation revises chapters to address the newest innovations in fields and adds three new chapters on the uses of microencapsulations in medicine, agriculture, and consumer products.
Although nanotechnology has revolutionized fields such as medicine, genetics, biology, bioengineering, mechanics, and chemistry, its increasing application in the food industry is relatively recent in comparison. Nanotechnology is being used to discover new methods for creating new flavors, extending food shelf life, and improving food protection and nutritional value. Nanotechnology in the food industry is now being explored for intelligent nutrient delivery systems, "smart" foods, contaminant detection nanodevices and nanosensors, advanced food processing, antimicrobial chemicals, encapsulation, and green nanomaterials. This new three-volume set, Nanotechnology Horizons in Food Process Engineering, addresses a multitude of topical issues and new developments in the field. Volume 1 focuses food preservation, food packaging and sustainable agriculture, while Volume 2 looks at nanotechnology in food process engineering, applications of biomaterials in food products, and the use of modern nanotechnology for human health. The third volume explores the newest trends in nanotechnology for food applications and their application for improving food delivery systems. Together, these three volumes provide a comprehensive and in-depth look at the emerging status of nanotechnology in the food processing industry, explaining the benefits and drawbacks of various methodologies that will aid in the improvement and development of food product sourcing and food hygiene monitoring methods. Volume 1 discusses emerging nanotechnolgical applications in food processing, packaging, and preservation. It focuses on using nanoparticles for safe and nutritional food production, protecting crops from pests, increasing nutritional value, and providing solutions for various environmental issues. This book especially deals with nanotechnology for controlling plant pathogens, food packaging and preservation, agricultural productivity, wastewater treatment, and bioenergy production. Volume 2 discusses nanotechnology use in non-thermal techniques such as high-pressure processing (HPP), pulsed electric fields (PEFs), pulsed light, ultraviolet, microwave, ohmic heating, electrospinning, and nano- and microencapsulation. This volume looks at the role and application of minimal processing techniques such as ozone treatment, vacuum drying, osmotic dehydration, dense phase carbon dioxide treatment, and high-pressure assisted freezing. The successful applications of nanotechnologies on juices, meat and fish, fruits and vegetable slices, food surface, purees, milk and milk products, extraction, drying enhancement, and encapsulation of micro-macro nutrients are also considered. The volume also presents several computer-aided techniques that are emerging in the food processing sector, such as robotics, radio frequency identification (RFID), three-dimensional food printing, artificial intelligence, etc. Significant role of food properties in design of specific food and edible packaging films have been elucidated. Volume 3: Trends, Nanomaterials and Food Delivery provides an overview of the current trends in nanotechnology for food applications and food delivery systems. Topics include a collection of chapters on diverse topics, including the stability of nanoparticles in food, nanobiosensing for the detection of food contaminants, nanotechnology applications in agriculture, the role of nanotechnology in nutrient delivery, how nanotechnology is applied in dairy products, biofunctional magnetic nanoparticles in food safety, the development of nutraceuticals using nanotechnological tools, and more.
As a paradigm for the future, micro-scale technology seeks to fuse revolutionary concepts in science and engineering and then translate it into reality. Nanotechnology is an interdisciplinary field that aims to connect what is seen with the naked eye and what is unseen on the molecular level. Diverse Applications of Nanotechnology in Biomedicine, Chemistry, and Engineering examines the strengths and future potential of micro-scale technologies in a variety of industries. Highlighting the benefits, shortcomings, and emerging perspectives in the application of nano-scale technologies, this book is a comprehensive reference source for synthetic chemists, engineers, graduate students, and researchers with an interest in the multidisciplinary applications, as well as the ongoing research in the field.
This book covers the recent developments in the production of micro and nano size products, which cater to the needs of the industry. The processes to produce the miniature sized products with unique characteristics are addressed. Moreover, their application in areas such as micro-engines, micro-heat exchangers, micro-pumps, micro-channels, printing heads and medical implants are also highlighted. The book presents such microsystem-based products as important contributors to a sustainable economy. The recent research in this book focuses on the development of new micro and nano manufacturing platforms while integrating the different technologies to manufacture the micro and nano components in a high throughput and cost effective manner. The chapters contain original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers.
Covering the latest technologies, Nanotechnology in eco-efficient construction provides an authoritative guide to the role of nanotechnology in the development of eco-efficient construction materials and sustainable construction. The book contains a special focus on applications concerning concrete and cement, as nanotechnology is driving significant development in concrete technologies. The new edition has 14 new chapters, including 3 new parts: Mortars and concrete related applications; Applications for pavements and other structural materials; and Toxicity, safety handling and environmental impacts. Civil engineers requiring an understanding of eco-efficient construction materials, as well as researchers and architects within any field of nanotechnology, eco-efficient materials or the construction industry will find this updated reference to be highly valuable.
Plant Nanobionics, Volume 2 continues the important discussion of nanotechnology in plants, but focuses with a focus on biosynthesis and toxicity. This book discusses novel approaches to biosynthesis of nanoparticles for the increase of plant production systems, controlled release of agrochemicals and management of plant biotic stress. Green biosynthesis of metallic nanoparticles from bee propolis, artificial photosynthesis and hybrid structures are presented. Although engineered nanoparticles have great potential for solving many agricultural and societal problems, their consequences on the ecosystems and environment must be responsibly considered. This volume aims to contribute to the limited literature on this topic through its comprehensive examination of nanoparticle toxicity on plants, microbes and human health. Environmental risks with recent data are discussed as well as risks associated with the transfer of nanoparticles through the food chain. This volume highlights the study of a mechanistic approach and the study of nanoparticles towards nanobionics. The application of polymeric materials for smart packing in the food industry and agriculture sector as well as the future of nanomaterials in detecting soil microbes for environmental remediation are also included.
Cancer Therapy and Diagnosis, Part A, Volume 43 in The Enzymes series, highlights new advances in the field, with this new volume presenting interesting chapters on Mesoporous silica nanoparticle synthesis, Periodic mesoporous organosilica, Nanovalves and other nanomachine-equipped nanoparticles and controlled release, Two-photon light control and photodynamic therapy, Biodegradable PMO nanoparticles, Cationic mesoporous silica and protein delivery, Drug loading, stimuli-responsive delivery and cancer treatment, Animal models and cancer therapy, siRNA delivery and TWIST shutdown for ovarian cancer treatment, and TBC (mesoporous silica nanoparticles and cancer therapy or biodistribution of MSN).
Computational Modelling of Nanoparticles highlights recent advances in the power and versatility of computational modelling, experimental techniques, and how new progress has opened the door to a more detailed and comprehensive understanding of the world of nanomaterials. Nanoparticles, having dimensions of 100 nanometers or less, are increasingly being used in applications in medicine, materials and manufacturing, and energy. Spanning the smallest sub-nanometer nanoclusters to nanocrystals with diameters of 10s of nanometers, this book provides a state-of-the-art overview on how computational modelling can provide, often otherwise unobtainable, insights into nanoparticulate structure and properties. This comprehensive, single resource is ideal for researchers who want to start/improve their nanoparticle modelling efforts, learn what can be (and what cannot) achieved with computational modelling, and understand more clearly the value and details of computational modelling efforts in their area of research. |
You may like...
Sports Data Mining
Robert P. Schumaker, Osama K. Solieman, …
Hardcover
R2,642
Discovery Miles 26 420
Multimedia Processing, Communication and…
Punitha P. Swamy, Devanur S Guru
Hardcover
R6,325
Discovery Miles 63 250
Computational Intelligence in…
Christian Moewes, Andreas Nurnberger
Hardcover
R5,177
Discovery Miles 51 770
Biometric System and Data Analysis…
Ted Dunstone, Neil Yager
Paperback
R4,011
Discovery Miles 40 110
Computational Intelligence for Big Data…
D P Acharjya, Satchidananda Dehuri, …
Hardcover
Handbook of Research on Advanced…
Siddhartha Bhattacharyya, Pinaki Banerjee, …
Hardcover
R7,041
Discovery Miles 70 410
Terminological Ontologies - Design…
Javier Lacasta, Javier Nogueras-Iso, …
Hardcover
R2,763
Discovery Miles 27 630
|