![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Technology: general issues > Nanotechnology
The field of nanoscience continues to grow at an impressive rate and, with such a vast landscape of material, careful distillation of the most important discoveries will help researchers find the key information they require. Nanoscience Volume 5 provides a critical and comprehensive assessment of the most recent research and opinion from across the globe. Coverage includes diverse topics such as controlling chemistry of gold nanoparticles to dictate their cellular interactions, uptake and toxicity, use of metal complexes to prepare 2-D materials and nanoscale porphyrin superstructures. Anyone practising in any nano-allied field, or wishing to enter the nano-world will benefit from this resource, presenting the current thought and applications of nanoscience.
Case Studies in Nanotoxicology and Particle Toxicology presents a highly-illustrated analysis of the most prominent cases on the adverse effects of nanoparticles and their impact on humans and the environment. This comprehensive reference demonstrates the possible risks imposed by managing and handling nanoparticles, showing the effects of involuntary inhalation or ingestion during their use and after their incineration. Through the use of numerous examples, readers will discover the possible risks and effects of working with nanoparticles, along with best practices to prevent these effects. The text is an essential reference for anyone working in the risk assessment of nanoparticles, including nanosafety professionals, occupational toxicologists, regulatory toxicologists, and clinicians.
This book is the first book in English on nanotechnology and nanomaterials integrating with enzymatic systems, with a focus on nanoparticles and biological applications. It covers comprehensively the relevant topics to understand the development of enzyme nanoparticles as it relates to the complicated structures of enzyme nanoparticles and their functionalization and immobilization on to various supports. The preparation of enzyme nanoparticles, their kinetic properties and applications after immobilization of the immobilized enzyme nanoparticles is described. The use of colour images in all formats of the book will improve the understanding of the topics covered. The book offers an integration of Enzymology and Nanotechnology and provides the latest information on preparation of enzyme nanoparticles, their characterization, their functionalization and immobilization on to various supports and thereafter their kinetic properties and applications in various industries with special reference to Biosensor Technology.
This book is a detailed introduction to mechanical alloying, offering guidelines on the necessary equipment and facilities needed to carry out the process and giving a fundamental background to the reactions taking place. El-Eskandarany, a leading authority on mechanical alloying, discusses the mechanism of powder consolidations using different powder compaction processes. A new chapter will also be included on thermal, mechanically-induced and electrical discharge-assisted mechanical milling. Fully updated to cover recent developments in the field, this second edition also introduces new and emerging applications for mechanical alloying, including the fabrication of carbon nanotubes, surface protective coating and hydrogen storage technology. El-Eskandarany discusses the latest research into these applications, and provides engineers and scientists with the information they need to implement these developments. The industrial applications of nanocrystalline and metallic glassy powders are presented. The book also contains over 200 tables and graphs to illustrate
the milling processes and present the properties and
characteristics of the resulting materials. Tables and graphs are used to explain the stages of the milling processes and provide an understanding of the properties and characteristics of the resulting materials. A comprehensive update on the previous edition, including new chapters to cover new applications.
This book highlights current advanced developments in bioepoxy and bioepoxy/clay nanocomposites and an optimisation of material formulation and processing parameters on fabrication of bioepoxy/clay nanocomposites in order to achieve the highest mechanical properties in relation to their morphological structures, thermal properties, as well as biodegradability and water absorption, which is based on the use of Taguchi design of experiments with the consideration of technical and economical point of view. It also elaborates holistic theoretical modelling of tensile properties of such bionanocomposites with respect to the effect of contents of nanoclay fillers and epoxydised soybean oil (ESO).
With Application of Nonlinear Systems in Nanomechanics and Nanofluids the reader gains a deep and practice-oriented understanding of nonlinear systems within areas of nanotechnology application as well as the necessary knowledge enabling the handling of such systems. The book helps readers understand relevant methods and techniques for solving nonlinear problems, and is an invaluable reference for researchers, professionals and PhD students interested in research areas and industries where nanofluidics and dynamic nano-mechanical systems are studied or applied. The book is useful in areas such as nanoelectronics and bionanotechnology, and the underlying framework can also be applied to other problems in various fields of engineering and applied sciences.
Nanomaterials have been used for years in industries such as consumer products, textile production, and biomedicine, yet the literature outlining their use in environmental causes is limited. The safety, toxicity, transportation, and removal of this technology must be addressed as nanotechnology and nanomaterial use is expected to grow. Applying Nanotechnology for Environmental Sustainability addresses the applications of nanomaterials in the field of environmental conservation and sustainability, and analyses the potential risks associated with their use. It elucidates the scientific concepts and emerging technologies in nanoscience and nanotoxicity by offering a wide range of innovative topics and reviews regarding its use. This publication is essential for environmental engineers, researchers, consultants, students, regulators, and professionals in the field of nanotechnology.
Polymers have proven to be very suitable materials for topographic structuring, in particular in nanoreplication processes. Micro- and Nanografting strategies address the possibility for the formation of chemical patterns and structures on or in polymeric substrates using relatively simple processes. Polymer Micro- and Nanografting focuses on grafting techniques characterization and applications for the particular combination of polymer layers on polymer substrates. The authors, leaders in this area of research, provide a comprehensive survey on polymer-on-polymer grafting, covering the latest developments and future applications.
Innovation in areas such as power supplies, size reduction, biocompatibility, durability and lifespan is leading to a rapid increase in the range of devices and applications in the field of implantable biomedical microsystems, which are used for monitoring, diagnosing, and controlling the activities of the human body. This book provides comprehensive coverage of the fundamental design principles for implantable systems, as well as several major application areas. Each component in an implantable system is described, and major case studies demonstrate how these systems can be designed and optimized for specific design objectives. Beside low-power signal processing electronics for implantable systems, further topics covered include signal processing hardware, sensor selection, wireless telemetry devices, new types of bio-transducers, power management solutions, system integration techniques, computational algorithms, device packaging, and security measures. Case studies include studies on implantable neural signal processors, brain-machine interface (BMI) systems, implantable pressure sensors, pacemakers, neural prosthesis, cochlear implant systems, bladder pressure monitoring for treating urinary incontinence, and drug delivery for cancer patients. Implantable Biomedical Microsystems is the first comprehensive
coverage of bioimplantable system design providing an invaluable
information source for researchers in Biomedical, Electrical,
Computer, Systems, and Mechanical Engineering as well as Engineers
involved in design and development of implantable electronic
systems and, more generally, Engineers working on low-power
wireless applications.
Hybrid composites have exceptional features due to superior mechanical properties, fatigue/impact resistance, and balanced thermal distortion stability. This book covers the latest developments in the hybrid composite materials, processing, characterization, and modeling of materials behaviour. While covering the same, the book also provides insight on its applications in medical science.
In the second edition of "Emerging Nanotechnologies for Manufacturing," an unrivalled team of international experts explores existing and emerging nanotechnologies as they transform large-scale manufacturing contexts in key sectors such as medicine, advanced materials, energy, and electronics. From their different perspectives, the contributors explore technologies and techniques as well as applications and how they transform those sectors. With updated chapters and expanded coverage, the new edition of "Emerging Nanotechnologies for Manufacturing" reflects the latest developments in nanotechnologies for manufacturing and covers additional nanotechnologies applied in the medical fields, such as drug delivery systems. New chapters on graphene and smart precursors for novel nanomaterials are also added. This important and in-depth guide will benefit a broad
readership, from R&D scientists and engineers to venture
capitalists.
Hyperbolic metamaterials were originally introduced to overcome the diffraction limit of optical imaging. Soon thereafter it was realized that hyperbolic metamaterials demonstrate a number of novel phenomena resulting from the broadband singular behavior of their density of photonic states. These novel phenomena and applications include super resolution imaging, new stealth technologies, enhanced quantum-electrodynamic effects, thermal hyperconductivity, superconductivity, and interesting gravitation theory analogs. Here I review typical material systems, which exhibit hyperbolic behavior and outline important new applications of hyperbolic metamaterials, such as imaging experiments with plasmonic hyperbolic metamaterials and novel VCSEL geometries, in which the Bragg mirrors may be engineered in such a way that they exhibit hyperbolic properties in the long wavelength infrared range, so that they may be used to efficiently remove excess heat from the laser cavity. I will also discuss potential applications of self-assembled photonic hypercrystals. This system bypasses 3D nanofabrication issues, which typically limit hyperbolic metamaterial applications. Photonic hypercrystals combine the most interesting features of hyperbolic metamaterials and photonic crystals.
This book presents state-of-the-art coverage of synthesis of advanced functional materials. Unconventional synthetic routes play an important role in the synthesis of advanced materials as many new materials are metastable and cannot be synthesized by conventional methods. This book presents various synthesis methods such as conventional solid-state method, combustion method, a range of soft chemical methods, template synthesis, molecular precursor method, microwave synthesis, sono-chemical method and high-pressure synthesis. It provides a comprehensive overview of synthesis methods and covers a variety of materials, including ceramics, films, glass, carbon-based, and metallic materials. Many techniques for processing and surface functionalization are also discussed. Several engineering aspects of materials synthesis are also included. The contents of this book are useful for researchers and professionals working in the areas of materials and chemistry.
Diamond's supreme properties can be realized by chemical vapor deposition (CVD) of diamond films with many applications, such as cutting tools, tweeter diaphragms, deep ultraviolet light-emitting diodes, radomes, CPU transistors, quantum computer, and MEMs. This volume provides extensive reviews on various CVD methods with examples. Meanwhile, there are other forms of carbon coatings, including diamond-like carbon, carbon nanotubes, and graphene. These carbon coatings possess properties derived from diamond. For example, graphene is actually flattened diamond's (111) face with superb electrical and thermal conductivities. For the first time, this book reveals a catalytic method to grow single-crystal graphene, whose applications are expected in heat spreaders, battery electrodes, interconnected circuits, and 6G antennae. |
![]() ![]() You may like...
Beyond Brain Death - The Case Against…
M. Potts, P.A. Byrne, …
Hardcover
R3,038
Discovery Miles 30 380
Handbook of Research on Deep…
Alex Noel Joseph Raj, Vijayalakshmi G. V. Mahesh, …
Hardcover
R8,755
Discovery Miles 87 550
Biopsy Pathology in Colorectal Disease…
Ian Talbot, Ashley Price, …
Hardcover
R6,336
Discovery Miles 63 360
Semiconductor Nanophotonics - Materials…
Michael Kneissl, Andreas Knorr, …
Hardcover
R5,198
Discovery Miles 51 980
|