![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Technology: general issues > Nanotechnology
This book provides comprehensive coverage of the most recent progress and developments in the field of magnetic nanoparticles, with special emphasis on new materials design approaches for magnetic nanoarchitectures, advanced characterization techniques, and a wide range of applications areas including permanent magnets, biomedicine, and life sciences. The book also features an exhaustive section on fundamentals, covering single particle effects, surface effects, and interparticle interactions. The book delivers a strong focus throughout on the multidisciplinarity of the subject spanning physics, chemistry, engineering, biology, medicine, and environmental science. This forward-looking contributed volume highlights future perspectives and areas of emerging research, and will be of great interest to advanced undergraduates, as well as researchers in academia and industry.
Urbanization, industrialization, and unethical agricultural practices have considerably negative effects on the environment, flora, fauna, and the health and safety of humanity. Over the last decade, green chemistry research has focused on discovering and utilizing safer, more environmentally friendly processes to synthesize products like organic compounds, inorganic compounds, medicines, proteins, enzymes, and food supplements. These green processes exist in other interdisciplinary fields of science and technology, like chemistry, physics, biology, and biotechnology, Still the majority of processes in these fields use and generate toxic raw materials, resulting in techniques and byproducts which damage the environment. Green chemistry principles, alternatively, consider preventing waste generation altogether, the atom economy, using less toxic raw materials and solvents, and opting for reducing environmentally damaging byproducts through energy efficiency. Green chemistry is, therefore, the most important field relating to the sustainable development of resources without harmfully impacting the environment. This book provides in-depth research on the use of green chemistry principles for a number of applications.
Heterogeneous catalysts are an important tool for greener catalytic processes due to the ease of their removal from the reaction mixture and feasibility of reuse. When these catalysts can operate in the ideal green solvent, water, they improve the sustainability of the process. This book explores aqueous mediated heterogeneous catalysts and their use in synthesis. Topics covered include nanomaterials, quantum dots, metal organic frameworks, and their use as catalysts.
Written by the founder of the field of carbon "quantum" dots (carbon dots) and related technology, this book outlines the principles of carbon dots and presents strong evidence for that small carbon nanoparticles and by extension carbon dots represent the nanoscale carbon allotrope at zero-dimension. Historical accounts of the inception and evolution of the carbon dots field are provided. Experimental approaches and techniques for the dot synthesis and some related major issues are discussed in detail. The photoexcited state properties, especially the bright and colorful photoluminescence emissions, and photoinduced redox characteristics of carbon dots are presented, and so are their advantages over semiconductor quantum dots as well as fullerenes. Carbon dots are also compared with "graphene quantum dots", for which a unified mechanistic understanding is proposed. Finally, a broad range of applications of carbon dots and their derived hybrid nanostructures in biomedical, renewable energy, food and environmental safety, and other technologies are highlighted. The book concludes with a discussion on the excellent potential and opportunities for further research and development.
Applications of microbial nanotechnology are currently emerging with new areas being explored. Biosynthesis of nanomaterials by microorganisms is a recently attracting interest as a new, exciting approach towards the development of 'greener' nanomanufacturing compared to traditional chemical and physical approaches. This book will cover recent advances of microbial nanotechnology in agriculture, industry, and health sectors.
This book includes selected, peer-reviewed contributions from the 2018 International Conference on "Physics and Mechanics of New Materials and Their Applications", PHENMA 2018, held in Busan, South Korea, 9-11 August 2018. Focusing on manufacturing techniques, physics, mechanics, and applications of modern materials with special properties, it covers a broad spectrum of nanomaterials and structures, ferroelectrics and ferromagnetics, and other advanced materials and composites. The authors discuss approaches and methods in nanotechnology; newly developed, environmentally friendly piezoelectric techniques; and physical and mechanical studies of the microstructural and other properties of materials. Further, the book presents a range of original theoretical, experimental and computational methods and their application in the solution of various technological, mechanical and physical problems. Moreover, it highlights modern devices demonstrating high accuracy, longevity and the ability to operate over wide temperature and pressure ranges or in aggressive media. The developed devices show improved characteristics due to the use of advanced materials and composites, opening new horizons in the investigation of a variety of physical and mechanical processes and phenomena.
This book assesses the current development and potential applications of nanoparticle technology in oil industry and explores new research directions in this frontier field. It outlines the theory and practical challenges of the nanoparticle colloidal behavior in oil matrixes and aqueous solutions, the interactions between rock and nanofluid, nanoparticles and asphaltenes, and the surface phenomena relevant to the application of this technology. The book also describes the transport behavior of nanoparticles in oil/sand media for in-situ upgrading and recovery of heavy oil. Currently, the main objectives of applying nanoscale materials in oil industry are the remediation of formation damage, the improvement of energy efficiency, the abatement of environmental footprints and the increment of recovery factors of oil reservoirs, to name a few. The book consists of 15 chapters with contributions by leading experts in the topics of fabrication methods, opportunities and challenges in the oil & gas industry, modeling and application of nanofluids in the field and environmental applications of nanoparticles. The growing demand for oil has led to the need to exploit unconventional oil resources, such as heavy and extra-heavy crude oil. However, in the current context, upgrading and recovery of heavy oil are highly energy and water intensive, which consequently results in environmental impacts. Therefore, it is necessary to search for new ideas and alternatives in the field of in-situ and ex-situ upgrading and recovery to improve current technologies and make them both environmentally sound and cost-effective. Research conducted by the authors and numerous other researchers has shown that nanoparticle technology could be successfully employed for enhancing the upgrading and recovery of heavy oil with cost-effective and environmentally friendly approaches. Examples on the applications of nanoparticles in heavy oil include the adsorption, oxidation, and gasification/cracking of asphaltenes, a problematic constituent present in heavy oils; in-situ upgrading of the Athabasca bitumen by multi-metallic in-situ prepared nanocatalysts; the inhibition of precipitation and deposition of asphaltnes; and the enhanced perdurability against asphaltene damage in oil sands porous media by injection of nanofluids; sequestration of oil from spilled by nanoparticles, cleaning up oil sand process affected water by integrating nanoparticle with conventional treatment processes, etc.
This book highlights the fundamentals of ferrites and multiferroic materials with special attention to their structure, types, and properties. It presents a comprehensive survey about ferrite and multiferroic materials, in areas significant to research and development in academia as well as in industry. The book discusses various types of methods applied for their synthesis and characterizations. This book is concerned with the fascinating class of materials with the promise for wide-ranging applications, including electromagnets, magnetic fluid hyperthermia, antenna applications, memory devices, switching circuits, bio-medical applications, actuators, magnetic field sensors and water purification, etc.
This book provides a comprehensive overview of the nitrilimine 1,3-dipole, from its initial discovery in 1959 to the most recent publications. Covering topics such as the core properties of the dipole and the various methods of synthesis available, it particularly highlights the diverse reactivity profile of the nitrilimine and its numerous applications in bioorthogonal and materials chemistry. The book is of interest to academic and industrial researchers working in this area and to those new to the field.
This book introduces recent progress in preparation and application of core-shell and yolk-shell structures for attractive design of catalyst materials. Core-shell nanostructures with active core particles covered directly with an inert shell can perform as highly active and selective catalysts with long lifetimes. Yolk-shell nanostructures consisting of catalytically active core particles encapsulated by hollow materials are an emerging class of nanomaterials. The enclosed void space is expected to be useful for encapsulation and compartmentation of guest molecules, and the outer shell acts as a physical barrier to protect the guest molecules from the surrounding environment. Furthermore, the tunability and functionality in the core and the shell regions can offer new catalytic properties, rendering them attractive platform materials for the design of heterogeneous catalysts. This book describes the recent development of such unique nanostructures to design effective catalysts which can lead to new chemical processes. It provides an excellent guide for design and application of core-shell and yolk-shell structured catalysts for a wide range of readers working on design of attractive catalysts, photocatalysts, and electrocatalysts for energy, environmental, and green chemical processes.
The textile waste water is well known to contain many detrimental impacts in terms of its pollutants and the issues pertaining to its discharged without being untreated, or even discharged without meeting all stipulated parameters. There is an ample amount of advancements in treating textile waste water in a sustainable way and this book comprehends the same with eight insightful chapters. The aim of this book is to deal with the advances in sustainable waste water treatments with topics Conjugated Polymer Coated Novel Bio-adsorbents for Wastewater Treatment , Advanced Oxidation Processes (AOP) - Effective innovative treatment methods to degrade textile dye effluent, etc.
As a paradigm for the future, micro-scale technology seeks to fuse revolutionary concepts in science and engineering and then translate it into reality. Nanotechnology is an interdisciplinary field that aims to connect what is seen with the naked eye and what is unseen on the molecular level. Diverse Applications of Nanotechnology in Biomedicine, Chemistry, and Engineering examines the strengths and future potential of micro-scale technologies in a variety of industries. Highlighting the benefits, shortcomings, and emerging perspectives in the application of nano-scale technologies, this book is a comprehensive reference source for synthetic chemists, engineers, graduate students, and researchers with an interest in the multidisciplinary applications, as well as the ongoing research in the field.
Traditional methods in synthetic chemistry produce chemical waste and byproducts, yield smaller desired products, and generate toxic chemical substances, but the past two centuries have seen consistent, greener improvements in organic synthesis and transformations. These improvements have contributed to substance handling efficiency by using green-engineered forerunners like sustainable techniques, green processes, eco-friendly catalysis, and have minimized energy consumption, reduced potential waste, improved desired product yields, and avoided toxic organic precursors or solvents in organic synthesis. Green synthesis has the potential to have a major ecological and monetary impact on modern pharmaceutical R&D and organic chemistry fields. This book presents a broad scope of green techniques for medicinal, analytical, environmental, and organic chemistry applications. It presents an accessible overview of new innovations in the field, dissecting the highlights and green chemistry attributes of approaches to green synthesis, and provides cases to exhibit applications to pharmaceutical and organic chemistry. Although daily chemical processes are a major part of the sustainable development of pharmaceuticals and industrial products, the resulting environmental pollution of these processes is of worldwide concern. This edition discusses green chemistry techniques and sustainable processes involved in synthetic organic chemistry, natural products, drug syntheses, as well various useful industrial applications.
Advances in Phytonanotechnology: From Synthesis to Application guides readers through various applications of nanomaterials on plants by presenting the latest research related to nanotechnology and nanomaterials on plant systems. The book focuses on the effects of these applications on plant morphology, physiology, biochemistry, ecology and genetics. Sections cover the impact on plant yield, techniques, a review of positive and negative impacts, and an overview of current policies regarding the use of nanotechnology on plants. Additionally, the book offers insights into the appropriate application of nanoscience to plants and crops for improved outcome and an exploration of their bioavailability and toxicity in the environment.
This book provides an up-to-date overview of gastrointestinal malignancies, including prevention, early detection, intervention, and life-extending therapeutics. It also assesses various biomarkers used for diagnostics, prognostics and prediction of response to chemoresistance. Further, it discusses the latest trends in the use of small-molecule targeted therapies and immunotherapies as single agents or combination with other treatments. Since resistance to radiation and chemotherapy contribute to the high recurrence and poor survival rates, improving the outcome for GI malignancies is dependent on the introduction of new biomarkers and therapeutic agents. Lastly, the book systematically investigates novel theranostics approaches using nanotechnology for the detection, diagnosis, and personalized treatment of GI malignancies.
This book covers the recent developments in the production of micro and nano size products, which cater to the needs of the industry. The processes to produce the miniature sized products with unique characteristics are addressed. Moreover, their application in areas such as micro-engines, micro-heat exchangers, micro-pumps, micro-channels, printing heads and medical implants are also highlighted. The book presents such microsystem-based products as important contributors to a sustainable economy. The recent research in this book focuses on the development of new micro and nano manufacturing platforms while integrating the different technologies to manufacture the micro and nano components in a high throughput and cost effective manner. The chapters contain original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers.
Microencapsulations may be found in a number of fields like medicine, drug delivery, biosensing, agriculture, catalysis, intelligent microstructures and in many consumer goods. This new edition of Microencapsulation revises chapters to address the newest innovations in fields and adds three new chapters on the uses of microencapsulations in medicine, agriculture, and consumer products.
This book highlights some of the latest advances in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe and beyond. It features contributions presented at the 7th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2019), which was held on August 27-30, 2019 at Lviv Polytechnic National University, and was jointly organized by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key findings on material properties, behavior, and synthesis. This book's companion volume also addresses topics such as nano-optics, energy storage, and biomedical applications.
This book highlights emerging trends in terahertz engineering and system technologies, mainly, devices, advanced materials, and various applications in THz technology. It includes advanced topics such as terahertz biomedical imaging, pattern recognition and tomographic reconstruction for THz biomedical imaging by use of machine learning and artificial intelligence, THz imaging radars for autonomous vehicle applications, THZ imaging system for security and surveillance. It also discusses theoretical, experimental, established and validated empirical work on these topics and the intended audience is both academic and professional. |
![]() ![]() You may like...
Variational Problems in Riemannian…
Paul Baird, Ahmad El-Soufi, …
Hardcover
R2,869
Discovery Miles 28 690
Mathematical Elasticity, Volume III…
Philippe G. Ciarlet
Paperback
Beginning iOS 7 Development - Exploring…
Jack Nutting, David Mark, …
Paperback
Nonequilibrium Thermodynamics…
Yasar Demirel, Vincent Gerbaud
Paperback
Production and Purification of…
Yun Hang Hu, Xiaoliang Ma, …
Hardcover
R5,811
Discovery Miles 58 110
Smart and Secure Internet of Healthcare…
Nitin Gupta, Jagdeep Singh, …
Hardcover
R3,581
Discovery Miles 35 810
|