Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Technology: general issues > Nanotechnology
Research on nanotechnology has mainly focused on the aspects of synthesis of nanomaterials that have unique chemical, thermal, and mechanical properties applicable to a wide range of applications. A variety of properties and phenomena have been investigated, and many of the studies have been directed toward understanding the properties and applications of nanomaterials. Nanomaterials have properties that are useful for enhancing surface-to-volume ratio, reactivity, strength, and durability. Due to their enhanced chemical and mechanical properties, the nanomaterials play promising roles in enhancing the desulfurization. Nanocomposites for the Desulfurization of Fuels is an essential reference source that discusses the synthesis, properties, and technological developments of nanomaterials and their applications in petroleum. Featuring research on topics such as hybrid materials, catalytic properties, and environmental concerns, this book is ideally designed for chemical engineers, scientists, researchers, academicians, and students in fields that include chemistry, petroleum, materials science, physics, and engineering.
This thesis presents a comprehensive theoretical description of classical and quantum aspects of plasmonics in three and two dimensions, and also in transdimensional systems containing elements with different dimensionalities. It focuses on the theoretical understanding of the salient features of plasmons in nanosystems as well as on the multifaceted aspects of plasmon-enhanced light-matter interactions at the nanometer scale. Special emphasis is given to the modeling of nonclassical behavior across the transition regime bridging the classical and the quantum domains. The research presented in this dissertation provides useful tools for understanding surface plasmons in various two- and three-dimensional nanostructures, as well as quantum mechanical effects in their response and their joint impact on light-matter interactions at the extreme nanoscale. These contributions constitute novel and solid advancements in the research field of plasmonics and nanophotonics that will help guide future experimental investigations in the blossoming field of nanophotonics, and also facilitate the design of the next generation of truly nanoscale nanophotonic devices.
This book presents selected articles from the 2nd International Conference on Nanomaterials and Advanced Composites, which brings together leading researchers and professionals from academia and industry to present their findings and provides a platform for the exchange of ideas and future collaboration. The book covers eight topics, including nanomaterials, polymer materials, mechanical materials, materials chemistry, materials physics, ceramics, recycling materials and green composites.
Globalization and industrialization involve a number of reactions, products, extractions, and separations that require the use of organic solvents. These solvents are responsible for a number of ecological concerns, including atmospheric and land toxicity. Conventional organic solvents are regarded as volatile organic compounds; some are even limited due to their potential for ozone layer depletion. While supercritical liquids exhibit physical properties that could make them ideal substitutes for these volatile compounds, there is particular interest in the use of carbon dioxide as a solvent of crude material. In particular, carbon dioxide has apparent 'green' properties, like its noncombustible nature, the fact that it is generally nonpoisonous, and its relative inertness. Thus, the use of supercritical carbon dioxide can provide practical improvements to the sustainability of industrial products and processes. This book provides in-depth literature in the area of industrial green processes, focusing on the separation, purification, and extraction of compounds utilizing supercritical carbon dioxide as a green solvent.
Heterogeneous catalysts are an important tool for greener catalytic processes due to the ease of their removal from the reaction mixture and feasibility of reuse. When these catalysts can operate in the ideal green solvent, water, they improve the sustainability of the process. This book explores aqueous mediated heterogeneous catalysts and their use in synthesis. Topics covered include nanomaterials, quantum dots, metal organic frameworks, and their use as catalysts.
This book summarizes and records the recent notable advances in diverse topics in organic crystal chemistry, which has made substantial progress along with the rapid development of a variety of analysis and measurement techniques for solid organic materials. This review book is one of the volumes that are published periodically on this theme. The previous volume, published in 2015, systematically summarized the remarkable progress in assorted topics of organic crystal chemistry using organic solids and organic-inorganic hybrid materials during the previous 5 years, and it has been widely read. The present volume also shows the progress of organic solid chemistry in the last 5 years, with contributions mainly by invited members of the Division of Organic Crystal Chemistry of the Chemical Society of Japan (CSJ), together with prominent invited authors from countries other than Japan.
This book highlights the latest advances in bioMEMS for biosensing applications. It comprehensively reviews different detection methods, including colorimetric, fluorescence, luminescence, bioluminescence, chemiluminescence, biochemiluminescence, and electrochemiluminescence, and presents various bioMEMS for each, together with recent examples. The book also offers an overview of the history of BioMEMS and the design and manufacture of the first bioMEMS-based devices.
Nanotechnology and molecular computation are two of the fastest advancing areas in recent years. Gaining attention over the past few decades, these fields are steadily becoming cornerstones of our developing culture in the 21st century. Theoretical and Technological Advancements in Nanotechnology and Molecular Computation: Interdisciplinary Gains compiles research in areas where nanoscience and computer science meet. This book explores current and future trends that discus areas such as, cellular nanocomputers, DNA self-assembly, and the architectural design of a nano-brain. The authors of each chapter have provided in-depth insight into the current state of research in nanotechnology and molecular computation as well as identified successful approaches, tools and methodologies in their research.
This book presents an overview of recent academic and industrial research efforts concerning halogen-free flame-retardant (FR) polymers and their nanocomposites. It summarizes the synthesis methods for various types of halogen-free FR polymers and their nanocomposites, and critically reviews their flame-retardant behavior, toxic-gas evolution during combustion, and inhibition methods. In turn, the book discusses the importance of metal oxide nanoparticles, nanoclay, and graphene in flame inhibition and addresses the FR properties of various FR compounds containing polymers, their FR mechanisms, and fire toxicant releasing and inhibition methods in detail. It systematically covers the synergetic effects between different FR compounds, and explains the significance of thermal stability and melt dripping for polymers' FR properties. The fundamental concepts described here are essential to understanding the FR behaviors of various polymers and their nanocomposites, and to developing efficient, environmentally friendly FR polymers and nanocomposites for a wide range of applications. This book is ideally suited for researchers in the fields of polymer science and engineering, and for graduate students in chemistry and materials science.
This book provides a unique and comprehensive overview of the latest advances, challenges and accomplishments in the rapidly growing field of theoretical and computational materials science. Today, an increasing number of industrial communities rely more and more on advanced atomic-scale methods to obtain reliable predictions of materials properties, complement qualitative experimental analyses and circumvent experimental difficulties. The book examines some of the latest and most advanced simulation techniques currently available, as well as up-to-date theoretical approaches adopted by a selected panel of twelve international research teams. It covers a wide range of novel and advanced materials, exploring their structural, elastic, optical, mass and electronic transport properties. The cutting-edge techniques presented appeal to physicists, applied mathematicians and engineers interested in advanced simulation methods in materials science. The book can also be used as additional literature for undergraduate and postgraduate students with majors in physics, chemistry, applied mathematics and engineering.
This book provides comprehensive coverage of the most recent progress and developments in the field of magnetic nanoparticles, with special emphasis on new materials design approaches for magnetic nanoarchitectures, advanced characterization techniques, and a wide range of applications areas including permanent magnets, biomedicine, and life sciences. The book also features an exhaustive section on fundamentals, covering single particle effects, surface effects, and interparticle interactions. The book delivers a strong focus throughout on the multidisciplinarity of the subject spanning physics, chemistry, engineering, biology, medicine, and environmental science. This forward-looking contributed volume highlights future perspectives and areas of emerging research, and will be of great interest to advanced undergraduates, as well as researchers in academia and industry.
Urbanization, industrialization, and unethical agricultural practices have considerably negative effects on the environment, flora, fauna, and the health and safety of humanity. Over the last decade, green chemistry research has focused on discovering and utilizing safer, more environmentally friendly processes to synthesize products like organic compounds, inorganic compounds, medicines, proteins, enzymes, and food supplements. These green processes exist in other interdisciplinary fields of science and technology, like chemistry, physics, biology, and biotechnology, Still the majority of processes in these fields use and generate toxic raw materials, resulting in techniques and byproducts which damage the environment. Green chemistry principles, alternatively, consider preventing waste generation altogether, the atom economy, using less toxic raw materials and solvents, and opting for reducing environmentally damaging byproducts through energy efficiency. Green chemistry is, therefore, the most important field relating to the sustainable development of resources without harmfully impacting the environment. This book provides in-depth research on the use of green chemistry principles for a number of applications.
This book introduces the new concept of "nanozyme", which refers to nanomaterials with intrinsic enzymatic activity, rather than nanomaterials with biological enzymes incorporated on the surface. The book presents the cutting-edge advances in nanozyme, with emphasis on state-of-the-art applications in many important fields, such as in the biomedical fields and for environmental protection. The nanozyme is a totally new type of artificial enzyme and exhibits huge advantages over natural enzymes, including greater stability, low cost, versatility, simplicity, and suitability for industry. It is of interest to university researchers, R&D engineers, as well as graduate students in nanoscience and technology, and biology wishing to learn the core principles, methods, and the corresponding applications of "nanozyme".
This book assesses the current development and potential applications of nanoparticle technology in oil industry and explores new research directions in this frontier field. It outlines the theory and practical challenges of the nanoparticle colloidal behavior in oil matrixes and aqueous solutions, the interactions between rock and nanofluid, nanoparticles and asphaltenes, and the surface phenomena relevant to the application of this technology. The book also describes the transport behavior of nanoparticles in oil/sand media for in-situ upgrading and recovery of heavy oil. Currently, the main objectives of applying nanoscale materials in oil industry are the remediation of formation damage, the improvement of energy efficiency, the abatement of environmental footprints and the increment of recovery factors of oil reservoirs, to name a few. The book consists of 15 chapters with contributions by leading experts in the topics of fabrication methods, opportunities and challenges in the oil & gas industry, modeling and application of nanofluids in the field and environmental applications of nanoparticles. The growing demand for oil has led to the need to exploit unconventional oil resources, such as heavy and extra-heavy crude oil. However, in the current context, upgrading and recovery of heavy oil are highly energy and water intensive, which consequently results in environmental impacts. Therefore, it is necessary to search for new ideas and alternatives in the field of in-situ and ex-situ upgrading and recovery to improve current technologies and make them both environmentally sound and cost-effective. Research conducted by the authors and numerous other researchers has shown that nanoparticle technology could be successfully employed for enhancing the upgrading and recovery of heavy oil with cost-effective and environmentally friendly approaches. Examples on the applications of nanoparticles in heavy oil include the adsorption, oxidation, and gasification/cracking of asphaltenes, a problematic constituent present in heavy oils; in-situ upgrading of the Athabasca bitumen by multi-metallic in-situ prepared nanocatalysts; the inhibition of precipitation and deposition of asphaltnes; and the enhanced perdurability against asphaltene damage in oil sands porous media by injection of nanofluids; sequestration of oil from spilled by nanoparticles, cleaning up oil sand process affected water by integrating nanoparticle with conventional treatment processes, etc.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
This book highlights the fundamentals of ferrites and multiferroic materials with special attention to their structure, types, and properties. It presents a comprehensive survey about ferrite and multiferroic materials, in areas significant to research and development in academia as well as in industry. The book discusses various types of methods applied for their synthesis and characterizations. This book is concerned with the fascinating class of materials with the promise for wide-ranging applications, including electromagnets, magnetic fluid hyperthermia, antenna applications, memory devices, switching circuits, bio-medical applications, actuators, magnetic field sensors and water purification, etc.
This first book to focus on the applications of nanomagnetism presents those already realized while also suggesting bold ideas for further breakthroughs. The first part is devoted to the concept of spin electronics and its use for data storage and magnetic sensing, while the second part concentrates on magnetic nanoparticles and their use in industrial environment, biological and medical applications. The third, more prospective part goes on to describe emerging applications related to spin current creation and manipulation, dynamics, spin waves and binary logic based on nano-scale magnetism. With its unique choice of topics and authors, this will appeal to academic as well as corporate researchers in a wide range of disciplines from physics via materials science to engineering, chemistry and life science.
Written by the founder of the field of carbon "quantum" dots (carbon dots) and related technology, this book outlines the principles of carbon dots and presents strong evidence for that small carbon nanoparticles and by extension carbon dots represent the nanoscale carbon allotrope at zero-dimension. Historical accounts of the inception and evolution of the carbon dots field are provided. Experimental approaches and techniques for the dot synthesis and some related major issues are discussed in detail. The photoexcited state properties, especially the bright and colorful photoluminescence emissions, and photoinduced redox characteristics of carbon dots are presented, and so are their advantages over semiconductor quantum dots as well as fullerenes. Carbon dots are also compared with "graphene quantum dots", for which a unified mechanistic understanding is proposed. Finally, a broad range of applications of carbon dots and their derived hybrid nanostructures in biomedical, renewable energy, food and environmental safety, and other technologies are highlighted. The book concludes with a discussion on the excellent potential and opportunities for further research and development.
This book introduces recent progress in preparation and application of core-shell and yolk-shell structures for attractive design of catalyst materials. Core-shell nanostructures with active core particles covered directly with an inert shell can perform as highly active and selective catalysts with long lifetimes. Yolk-shell nanostructures consisting of catalytically active core particles encapsulated by hollow materials are an emerging class of nanomaterials. The enclosed void space is expected to be useful for encapsulation and compartmentation of guest molecules, and the outer shell acts as a physical barrier to protect the guest molecules from the surrounding environment. Furthermore, the tunability and functionality in the core and the shell regions can offer new catalytic properties, rendering them attractive platform materials for the design of heterogeneous catalysts. This book describes the recent development of such unique nanostructures to design effective catalysts which can lead to new chemical processes. It provides an excellent guide for design and application of core-shell and yolk-shell structured catalysts for a wide range of readers working on design of attractive catalysts, photocatalysts, and electrocatalysts for energy, environmental, and green chemical processes.
The textile waste water is well known to contain many detrimental impacts in terms of its pollutants and the issues pertaining to its discharged without being untreated, or even discharged without meeting all stipulated parameters. There is an ample amount of advancements in treating textile waste water in a sustainable way and this book comprehends the same with eight insightful chapters. The aim of this book is to deal with the advances in sustainable waste water treatments with topics Conjugated Polymer Coated Novel Bio-adsorbents for Wastewater Treatment , Advanced Oxidation Processes (AOP) - Effective innovative treatment methods to degrade textile dye effluent, etc.
This book includes selected, peer-reviewed contributions from the 2018 International Conference on "Physics and Mechanics of New Materials and Their Applications", PHENMA 2018, held in Busan, South Korea, 9-11 August 2018. Focusing on manufacturing techniques, physics, mechanics, and applications of modern materials with special properties, it covers a broad spectrum of nanomaterials and structures, ferroelectrics and ferromagnetics, and other advanced materials and composites. The authors discuss approaches and methods in nanotechnology; newly developed, environmentally friendly piezoelectric techniques; and physical and mechanical studies of the microstructural and other properties of materials. Further, the book presents a range of original theoretical, experimental and computational methods and their application in the solution of various technological, mechanical and physical problems. Moreover, it highlights modern devices demonstrating high accuracy, longevity and the ability to operate over wide temperature and pressure ranges or in aggressive media. The developed devices show improved characteristics due to the use of advanced materials and composites, opening new horizons in the investigation of a variety of physical and mechanical processes and phenomena.
|
You may like...
Nanotechnology - Delivering on the…
H.N. Cheng, Laurence J. Doemeny, …
Hardcover
R4,771
Discovery Miles 47 710
Silicon Nanodevices
Henry H Radamson H Radamson, Guilei Wang
Hardcover
R1,481
Discovery Miles 14 810
The Science and Function of…
Amanda S. Harper-Leatherman, Camille M. Solbrig
Hardcover
R5,406
Discovery Miles 54 060
Sustainable Nanotechnology and the…
Najm Shamim, Virender K. Sharma
Hardcover
R5,423
Discovery Miles 54 230
Fluorine-Related Nanoscience with Energy…
Donna Nelson, Christohpher Brammer
Hardcover
R2,685
Discovery Miles 26 850
Photocatalytic Dye Degradation Using…
Muhammad Ikram, Muhammad Ahsaan Bari, …
Hardcover
R3,230
Discovery Miles 32 300
Advanced Nanocellulose-Based Materials…
Carla Vilela, Carmen S Freire
Hardcover
R1,084
Discovery Miles 10 840
|