![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Other technologies
The essays in this open access volume identify the key ingredients for success in capitalizing on public investments in scientific projects and the development of large-scale research infrastructures. Investment in science - whether in education and training or through public funding for developing new research tools and technologies - is a crucial priority. Authors from big research laboratories/organizations, funding agencies and academia discuss how investing in science can produce societal benefits as well as identifying future challenges for scientists and policy makers. The volume cites different ways to assess the socio-economic impact of Research Infrastructures and their role as hubs of global collaboration, creativity and innovation. It highlights the different benefits stemming from fundamental research at the local, national and global level, while also inviting us to rethink the notion of "benefit" in the 21st century. Public investment is required to maintain the pace of technological and scientific advancements over the next decades. Far from advocating a radical transformation and massive expansion in funding, the authors suggest ways for maintaining a strong foundation of science and research to ensure that we continue to benefit from the outputs. The volume draws inspiration from the first "Economics of Big Science" workshop, held in Brussels in 2019 with the aim of creating a new space for dialogue and interaction between representatives of Big Science organizations, policy makers and academia. It aspires to provide useful reading for policy makers, scientists and students of science, who are increasingly called upon to explain the value of fundamental research and adopt the language and logic of economics when engaging in policy discussions.
This book presents the fundamentals of the reservoir and interfacial engineering. The book systematically starts with the basics of primary, secondary and tertiary (enhanced) oil recovery and emphasizes on the theory of microbial-enhanced oil recovery (MEOR) and its potential toward recovery of oil in place. Different approaches of MEOR such as in-situ, ex-situ, and integration of chemical- and microbial-enhanced oil recovery (EOR) are discussed in detail. This book highlights the link between the effectiveness of MEOR and the local reservoir conditions, crude oil characteristics, and indigenous microbial community. The latest implementations of MEOR across the globe are highlighted as case studies to outline the potential as well as the scope of MEOR. Given the topics covered, this book will be useful for professionals and researchers working in the areas of petroleum science and engineering, chemical engineering, biotechnology, bioengineering, and other related fields.
As long as we have mining and mineral processing, tailings and the responsible management thereof will remain at the forefront, with a company's environmental, social, and governance (ESG) performance in part a reflection of how well tailings risks are being managed. The Global Industry Standard on Tailings Management (GISTM) was published in August 2020, aiming to prevent catastrophic failure of tailings facilities by providing operators with specified measures and approaches throughout the mine life cycle, taking into account multiple stakeholder perspectives. In 2021, the International Council on Mining & Metals (ICMM) published the Tailings Management: Good Practice Guide intended to support safe, responsible management of tailings across the global mining industry, providing guidance on good governance and engineering practices to support continual improvement in tailings storage facility (TSF) management and help foster and strengthen the safety culture of mining companies. The Tailings Management Handbook is important and timely because there is no other comprehensive resource rooted in these new fundamentals and global principles for tailings management. Tailings management requires interdisciplinary and cross-functional understanding and support, which is apparent throughout this handbook. Dive into the wealth of information contributed by more than 100 world-renowned experts, beautifully crafted into a full-color handbook that focuses on the basics, life-cycle planning, site and tailings characterization, TSF design and construction, as well as systems and operations of TSFs. The inclusion of 42 case studies is an added plus with real-world successes and lessons learned.
This book gathers the latest advances, innovations, and applications in the field of computational geomechanics, as presented by international researchers and engineers at the 16th International Conference of the International Association for Computer Methods and Advances in Geomechanics (IACMAG), held in Turin, Italy on August 30 - September 2, 2022. Contributions include a wide range of topics in geomechanics such as: laboratory and field testing, constitutive modelling, monitoring and remote sensing, multiphase modelling, reliability and risk analysis, surface structures, deep structures, dams and earth structures, natural slopes, mining engineering, earthquake and dynamics, soil-atmosphere interaction, ice mechanics, landfills and waste disposal, gas and petroleum engineering, geothermal energy, offshore technology, energy geostructures and computational rail geotechnics.
Loudspeakers: For Music Recording and Reproduction, Second Edition is a comprehensive guide, offering the tools and understanding needed to cut out the guesswork from loudspeaker choice and set-up. Philip Newell and Keith Holland, with the assistance of Sergio Castro and Julius Newell, combine their years of experience in the design, application, and use of loudspeakers to cover a range of topics from drivers, cabinets, and crossovers, to amplifiers, cables, and surround sound. Whether using loudspeakers in a recording studio, mastering facility, broadcasting studio, film post-production facility, home, or musician's studio, or if you simply aspire to improve your music-production system this book will help you make the right decisions. This new edition provides significant updates on the topics of digital control, calibration, and cinema loudspeaker systems.
Coal is the commodity that powered the technologies that made the modern world. It also brought about unique communities marked by a high degree of social solidarity and self-help. Mining was central to working class life, drawing rural populations into industrial labour, but it often took place in picturesque landscapes, so that its black spoil heaps became a central symbol of the degradation of pastoral life by the demands of an extractive industry. Throughout Europe and the USA photographers have pictured the characteristic landscapes of the industry, and continue to do so as strip mining devastates huge areas of land. Not only landscape photography but also documentary, portraiture, photojournalism and art photography have been used in order to portray mines and miners. This book presents three interlinked strands of investigation. The first is the way in which the production of coal created paradigmatic communities grounded in particular landscapes. The second concerns the role of photography in exploring, delineating and critiquing mining communities. This in turn involves an examination of the aesthetic and social characteristics of a number of genres of photography. Lastly, it considers the growth and decline of these sites, the geographic shift of the industry to other places, and the re-presentation of traditional localities through the lens of the heritage industry and industrial tourism.
A revolution similar to that brought by CCDs to visible astronomy is still ahead in IR and submillimeter astronomy. There is certainly no wavelength range which has, over the past several years, seen such impressive advances in technology: large-scale detector arrays, new designs for cooling in space, lightweight mirror technologies. Scientific cases for observing the cold universe are outstanding. Observations in the FIR/Submm range will provide answers to such fundamental questions as: What is the spectrum of the primordial fluctuations? How do primeval galaxies look? What are the first stages of star formation? Most of the international space missions that have been triggered by these questions are presented in detail here. Technological issues raised by these missions are reviewed, as are the most recent achievements in cooling and detector technologies.
This open access textbook, like Rayleigh's classic Theory of Sound, focuses on experiments and on approximation techniques rather than mathematical rigor. The second edition has benefited from comments and corrections provided by many acousticians, in particular those who have used the first edition in undergraduate and graduate courses. For example, phasor notation has been added to clearly distinguish complex variables, and there is a new section on radiation from an unbaffled piston. Drawing on over 40 years of teaching experience at UCLA, the Naval Postgraduate School, and Penn State, the author presents a uniform methodology, based on hydrodynamic fundamentals for analysis of lumped-element systems and wave propagation that can accommodate dissipative mechanisms and geometrically-complex media. Five chapters on vibration and elastic waves highlight modern applications, including viscoelasticity and resonance techniques for measurement of elastic moduli, while introducing analytical techniques and approximation strategies that are revisited in nine subsequent chapters describing all aspects of generation, transmission, scattering, and reception of waves in fluids. Problems integrate multiple concepts, and several include experimental data to provide experience in choosing optimal strategies for extraction of experimental results and their uncertainties. Fundamental physical principles that do not ordinarily appear in other acoustics textbooks, like adiabatic invariance, similitude, the Kramers-Kronig relations, and the equipartition theorem, are shown to provide independent tests of results obtained from numerical solutions, commercial software, and simulations. Thanks to the Veneklasen Research Foundation, this popular textbook is now open access, making the e-book available for free download worldwide. Provides graduate-level treatment of acoustics and vibration suitable for use in courses, for self-study, and as a reference Highlights fundamental physical principles that can provide independent tests of the validity of numerical solutions, commercial software, and computer simulations Demonstrates approximation techniques that greatly simplify the mathematics without a substantial decrease in accuracy Incorporates a hydrodynamic approach to the acoustics of sound in fluids that provides a uniform methodology for analysis of lumped-element systems and wave propagation Emphasizes actual applications as examples of topics explained in the text Includes realistic end-of-chapter problems, some including experimental data, as well as a Solutions Manual for instructors. Features "Talk Like an Acoustician" boxes to highlight key terms introduced in the text.
While there are many biographies of JFK and accounts of the early years of US space efforts, this book uses primary source material and interviews with key participants to provide a comprehensive account of how the actions taken by JFK's administration have shaped the course of the US space program over the last 45 years.
The fast detection of explosives from the vapor phase would be one way to enhance the protection of society against terrorist attacks. Up to now the problem of detection of explosives, especially the location of explosives whether at large areas e. g. station halls, theaters or hidden in cars, aircraft cargo, baggage or explosives hidden in crowds e. g. suicide bombers or bombs in bags has not been solved. Smelling of explosives like dogs do seems to be a valuable tool for a security chain. In general different strategies can be adopt to the basic problem of explosive detection: * bulk detection * vapor detection Normally meetings cover both aspects and applications of the detection. Even though both methods might fulfill special aspects of a general security chain the underlying scientific questions differ strongly. Because of that the discussions of the scientists and practitioners from the different main directions are sometimes only less specific. Therefore the NATO Advisory Panel in Security-Related Civil Science and Technology proposed a small series of NATO ARW's which focuses on the different scientific aspects of explosives detection methods. This book is based on material presented at the first NATO ARW of this series in Moscow which covered the topic: Vapor and trace detection of explosives. The second ARW was held in St. Petersburg and treated the topic Bulk detection methods. The third workshop was held in Warwick and focused on electronic noses which cover a somewhat different aspect of vapor detection.
This book is devoted to interfaces between two fluids, that is, between a liquid and a gas (such as water and air) or between two liquids (such as water and oil). The main motivation for the book is twenty years of experimentation in the microgravity environment of space, and the associated theory. This unique environment has made possible numerous qualitative and quantitative observations of effects that are masked by gravity on earth. Large liquid surfaces have been created and their stability and dynamics have been studied. The experimental insights gained have, in turn, strongly stimulated further theoretical and mathematical investigations. Advancing and receding contact angles, wetting barriers, pinning of contact lines, oscillations of capillary surfaces and fluid sloshing are also discussed.
One of the major challenges of modern space mission design is the orbital mechanics -- determining how to get a spacecraft to its destination using a limited amount of propellant. Recent misions such as Voyager and Galileo required gravity assist maneuvers at several planets to accomplish theiir objectives. Today's students of aerospace engineering face the challenge of calculating these types of complex spacecraft trajectories. This classroom-tested textbook takes its title from an elective course which has been taught to senior undergraduates and first-year graduate students for the past 22 years. The subject of orbital mechanics is developed starting from the first principles, using Newton's laws of motion and the law of gravitation to prove Kepler's empirical laws of planetary motion. Unlike many texts the authors also use first principles to derive other important results including Kepler's equation, Lambert's time-of-flight equation, the rocket equation, the Hill-Clohessy-Wiltshire equations of relative motion, Gauss' equations for the variation of the elements, and the Gauss and Laplace methods of orbit determination. The subject of orbit transfer receives special attention. Optimal orbit transfers such as the Hohmann transfer, minimum-fuel transfers using more than two impulses, and non-coplanar orbital transfer are discussed. Patched-conic interplanetary trajectories including gravity-assist maneuvers are the subject of an entire chapter and are particularly relevent to modern space missions.
Many scientific papers and popular articles have been written on the topic of space tourism, describing everything from expected market sizes to the rules of 3-dimensional microgravity football. But what would it actually feel like to be a tourist in space, to be hurled into orbit on top of a controlled explosion, to float around in a spacecraft, and to be able to look down on your hometown from above the atmosphere? Space tourism is not science fiction anymore, Michel van Pelt tells us, but merely a logical step in the evolution of space flight. Space is about to be opened up to more and more people, and the drive behind this is one of the most powerful economic forces: tourism. Van Pelt describes what recreational space travel might look like, and explains the required space technology, the medical issues, astronaut training, and the possibilities of holidays to destinations far, far away. This is a book for everyone who has ever dreamed of traveling to space: a dream which, according to van Pelt, may not be so far from becoming a reality. Consider it the armchair traveler's guide to the coming boom in space tourism.
Worship Sound Spaces unites specialists from architecture, acoustic engineering and the social sciences to encourage closer analysis of the sound environments within places of worship. Gathering a wide range of case studies set in Europe, Asia, North America, the Middle East and Africa, the book presents investigations into Muslim, Christian and Hindu spaces. These diverse cultural contexts demonstrate the composite nature of designing and experiencing places of worship. Beginning with a historical overview of the three primary indicators in acoustic design of religious buildings, reverberation, intelligibility and clarity, the second part of this edited collection offers a series of field studies devoted to perception, before moving onto recent examples of restoration of the sound ambiances of former religious buildings. Written for academics and students interested in architecture, cultural heritage, acoustics, sensory studies and sound. The multimedia documents of this volume may be consulted at the address: https://frama.link/WSS
This volume constitutes the results of the International Conference on Underwater Environment, MOQESM'14, held at "Le Quartz" Conference Center in Brest, France, on October 14-15, 2014, within the framework of the 9th Sea Tech Week, International Marine Science and Technology Event. The objective of MOQESM'14 was to bring together researchers from both academia and industry, interested in marine robotics and hydrography with application to the coastal environment mapping and underwater infrastructures surveys. The common thread of the conference is the combination of technical control, perception, and localization, typically used in robotics, with the methods of mapping and bathymetry. The papers presented in this book focus on two main topics. Firstly, coastal and infrastructure mapping is addressed, focusing not only on hydrographic systems, but also on positioning systems, bathymetry, and remote sensing. The proposed methods rely on acoustic sensors such as side scan sonars, multibeam echo sounders, phase-measuring bathymetric sonars, as well as optical systems such as underwater laser scanners. Accurate underwater positioning is also addressed in the case of the use of a single acoustic beacon, and the latest advances in increasing the vertical precision of Global Navigation Satellite System (GNSS) are also presented. Most of the above mentioned works are closely related to autonomous marine vehicles. Consequently, the second part of the book describes some works concerning the methods associated with such type of vehicles. The selected papers focus on autonomous surface or underwater vehicles, detailing new approaches for localization, modeling, control, mapping, obstacle detection and avoidance, surfacing, and software development. Some of these works imply acoustics sensing as well as image processing. Set membership methods are also used in some papers. The applications of the work presented in this book concern in particular oceanography, monitoring of oil and gas infrastructures, and military field.
This monograph is a detailed study, and systematic defence, of the Growing Block Theory of time (GBT), first conceived by C.D. Broad. The book offers a coherent, logically perspicuous and ideologically lean formulation of GBT, defends it against the most notorious objections to be found in the extant philosophical literature, and shows how it can be derived from a more general theory, consistent with relativistic spacetime, on the pre-relativistic assumption of an absolute and total temporal order. The authors devise axiomatizations of GBT and its competitors which, against the backdrop of a shared quantified tense logic, significantly improves the prospects of their comparative assessment. Importantly, neither of these axiomatizations involves commitment to properties of presentness, pastness or futurity. The authors proceed to address, and defuse, a number of objections that have been marshaled against GBT, including the so-called epistemic objection according to which the theory invites skepticism about our temporal location. The challenge posed by relativistic physics is met head-on, by replacing claims about temporal variation by claims about variation across spacetime. The book aims to achieve the greatest possible rigor. The background logic is set out in detail, as are the principles governing the notions of precedence and temporal location. The authors likewise devise a novel spacetime logic suited for the articulation, and comparative assessment, of relativistic theories of time. The book comes with three technical appendices which include soundness and completeness proofs for the systems corresponding to GBT and its competitors, in both their pre-relativistic and relativistic forms. The book is primarily directed at researchers and graduate students working on the philosophy of time or temporal logic, but is of interest to metaphysicians and philosophical logicians more generally.
This book provides an extensive overview of the protection of cultural heritages sites on the Moon (humanity's lunar heritage) and the various threats they face. First of all, the international legal framework, especially the relevant space treaties are analyzed in terms of how they protect cultural heritages sites on the Moon. In turn, the book explores key aspects like the application of customary law, the UNESCO World Heritage Convention, or the Underwater Convention, and the possibility of adding these sites to UNESCO's World Heritage list. The book subsequently addresses the question of how to define culture heritage sites or artifacts, in particular in view of the "Outstanding Universal Value" criterion, which is a vital aspect in order to differentiate them from space garbage or even space threats. Lastly, the book proposes and elaborates on various protection systems and multilateral protection regulations. Especially now, 50 years after the first human landing on the Moon, the book is a timely publication that will be of interest to all scholars and professionals working in the space field.
A History Today Book of the Year A world-renowned astronomer and an esteemed science writer make the provocative argument for space exploration without astronauts. Human journeys into space fill us with wonder. But the thrill of space travel for astronauts comes at enormous expense and is fraught with peril. As our robot explorers grow more competent, governments and corporations must ask, does our desire to send astronauts to the Moon and Mars justify the cost and danger? Donald Goldsmith and Martin Rees believe that beyond low-Earth orbit, space exploration should proceed without humans. In The End of Astronauts, Goldsmith and Rees weigh the benefits and risks of human exploration across the solar system. In space humans require air, food, and water, along with protection from potentially deadly radiation and high-energy particles, at a cost of more than ten times that of robotic exploration. Meanwhile, automated explorers have demonstrated the ability to investigate planetary surfaces efficiently and effectively, operating autonomously or under direction from Earth. Although Goldsmith and Rees are alert to the limits of artificial intelligence, they know that our robots steadily improve, while our bodies do not. Today a robot cannot equal a geologist's expertise, but by the time we land a geologist on Mars, this advantage will diminish significantly. Decades of research and experience, together with interviews with scientific authorities and former astronauts, offer convincing arguments that robots represent the future of space exploration. The End of Astronauts also examines how spacefaring AI might be regulated as corporations race to privatize the stars. We may eventually decide that humans belong in space despite the dangers and expense, but their paths will follow routes set by robots.
Magnetotellurics is finding increasing applications for imaging electrically conductive structures below the Earths surface - in both industrial and academic research projects. In Models and Methods of Magnetotellurics the authors provide a systematic approach to understanding the modern theory of ill-posed problems which is essential to making confident meaningful interpretations of magnetotelluric and magnetovariational soundings. The interpretation is conducted in an interactive way, including the hypotheses tests and successive partial inversions with priority on the tippers, magnetic tensors and impedance-phases, which keeps out the destructive static effects of near-surface inhomogeneities. The efficiency of the interpretation is exemplified by new geoelectric models of the Baikal rift zone and the Cascadian subduction zone.
This is a major new exploration of traditional British craftsmanship, accompanying the prime time BBC TV series presented by Monty Don. It celebrates all aspects of rural crafts including woodcraft, thatching, weaving, stone masonry, metalwork and glass making. It showcases some of Britain's leading master craftsmen and explains the techniques at the heart of their trades. It reveals the fascinating history of British craftsmanship, inspiring interest and involvement in these valuable and rewarding crafts. "Mastercrafts" represents a major shift in attitudes towards appreciating handmade, sustainable crafted products rather than the cheap mass-produced items with which people have become increasingly disillusioned.
This innovative monograph explores a new mathematical formalism in higher-order temporal logic for proving properties about the behavior of systems. Developed by the authors, the goal of this novel approach is to explain what occurs when multiple, distinct system components interact by using a category-theoretic description of behavior types based on sheaves. The authors demonstrate how to analyze the behaviors of elements in continuous and discrete dynamical systems so that each can be translated and compared to one another. Their temporal logic is also flexible enough that it can serve as a framework for other logics that work with similar models. The book begins with a discussion of behavior types, interval domains, and translation invariance, which serves as the groundwork for temporal type theory. From there, the authors lay out the logical preliminaries they need for their temporal modalities and explain the soundness of those logical semantics. These results are then applied to hybrid dynamical systems, differential equations, and labeled transition systems. A case study involving aircraft separation within the National Airspace System is provided to illustrate temporal type theory in action. Researchers in computer science, logic, and mathematics interested in topos-theoretic and category-theory-friendly approaches to system behavior will find this monograph to be an important resource. It can also serve as a supplemental text for a specialized graduate topics course.
Sonic Identity at the Margins convenes the interdisciplinary work of 17 academics, composers, and performers to examine sonic identity from the 19th century to the present. Recognizing the myriad aspects of identity formation, the authors in this volume adopt methodological approaches that range from personal accounts and embodied expression to archival research and hermeneutic interpretation. They examine real and imagined spaces—from video games and monument sites to films and depictions of outer space—by focusing on sonic creation, performance, and reception. Drawing broadly from artistic and performance disciplines, the authors reimagine the roles played by music and sound in constructing notions of identity in a broad array of musical experiences, from anti-slavery songsters to Indigenous tunes and soundscapes, noise and multimedia to popular music and symphonic works. Exploring relationships between sound and various markers of identity—including race, gender, ability, and nationality—the authors explore challenging, timely topics, including the legacies of slavery, indigeneity, immigration, and colonial expansion. In heeding recent calls to decolonize music studies and confront its hegemonic methods, the authors interrogate privileged perspectives embedded in creating, performing, and listening to sound, as well as the approaches used to analyze these experiences.
- A comprehensive reference guide on the topic of sound reinforcement, suitable for both students and professionals - Covers a wide variety of fields of application, include sports venues, religious venues, corporate environments, cinemas and more. - Represents an opportunity to solidify our offering in the area of sound reinforcement
This book, the first English-language translation of Acoustique des instruments de musique, Second Edition, presents the necessary foundations for understanding the complex physical phenomena involved in musical instruments. What is the function of the labium in a flute? Which features of an instrument allow us to make a clear audible distinction between a clarinet and a trumpet? With the help of numerous examples, these questions are addressed in detail. The authors focus in particular on the significant results obtained in the field during the last fifteen years. Their goal is to show that elementary physical models can be used with benefit for various applications in sound synthesis, instrument making, and sound recording. The book is primarily addressed to graduate students and researchers; however it could also be of interest for engineers, musicians, craftsmen, and music lovers who wish to learn about the basics of musical acoustics. |
![]() ![]() You may like...
|