![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Other technologies
There's no better guide through mind-expanding questions such as what the nature of space and time is, how we fit within the universe, and how the universe fits within us than Neil deGrasse Tyson. But today, few of us have time to contemplate the cosmos. So Tyson brings the universe down to Earth succinctly and clearly, with sparkling wit, in digestible chapters consumable any time and anywhere in the busy day. Astrophysics for People in a Hurry reveals just what you need to be fluent and ready for the next cosmic headlines: from the Big Bang to black holes, from quarks to quantum mechanics and from the search for planets to the search for life in the universe.
This book reports the results of exhaustive research work on modeling and control of vertical oil well drilling systems. It is focused on the analysis of the system-dynamic response and the elimination of the most damaging drill string vibration modes affecting overall perforation performance: stick-slip (torsional vibration) and bit-bounce (axial vibration). The text is organized in three parts. The first part, Modeling, presents lumped- and distributed-parameter models that allow the dynamic behavior of the drill string to be characterized; a comprehensive mathematical model taking into account mechanical and electric components of the overall drilling system is also provided. The distributed nature of the system is accommodated by considering a system of wave equations subject to nonlinear boundary conditions; this model is transformed into a pair of neutral-type time-delay equations which can overcome the complexity involved in the analysis and simulation of the partial differential equation model. The second part, Analysis, is devoted to the study of the response of the system described by the time-delay model; important properties useful for analyzing system stability are investigated and frequency- and time-domain techniques are reviewed. Part III, Control, concerns the design of stabilizing control laws aimed at eliminating undesirable drilling vibrations; diverse control techniques based on infinite--dimensional system representations are designed and evaluated. The control proposals are shown to be effective in suppressing stick-slip and bit-bounce so that a considerable improvement of the overall drilling performance can be achieved. This self-contained book provides operational guidelines to avoid drilling vibrations. Furthermore, since the modeling and control techniques presented here can be generalized to treat diverse engineering problems, it constitutes a useful resource to researchers working on control and its engineering application in oil well drilling.
Government agencies have tended to attempt to project favorable public images of themselves as a method of building the public support they need to survive, all the more so in times of increasingly sophisticated communications and decreasingly available financial resources. This study analyzes NASA's efforts to build political support through its public image. Throughout its tumultuous history, the space agency has carefully tailored its use of basic images: nationalism (during the Mercury era), romanticism (during the Apollo era), and pragmatism (during the Shuttle era)--to fit its prevailing political circumstances. This in-depth study will be of keen interest to scholars in political science and political communication.
Jackups, semisubmersibles and drillships are the marine vessels used to drill offshore wells and are referred to collectively as mobile offshore drilling units (MODUs). MODUs are supplied through newbuild construction and operate throughout the world in highly competitive regional markets. The Offshore Drilling Industry and Rig Construction Market in the Gulf of Mexico examines the global MODU service and construction industry and describes the economic impacts of rig construction in the United States. The industrial organization and major players in the contract drilling and construction markets are described and categorized. Dayrates in the contract drilling market are evaluated and hypotheses regarding dayrate factors are tested. Models of contractor decision-making are developed, including a net-present value model of newbuilding investment and stacking decisions, and market capitalization models are derived. Jackup construction shipyards and processes are reviewed along with estimates of labor, equipment, and material cost in U.S. construction. Derivation of newbuild and replacement cost functions completes the treatise. The comprehensive and authoritative coverage of The Offshore Drilling Industry and Rig Construction Market in the Gulf of Mexico makes it an ideal reference for engineers, industry professionals, policy analysts, government regulators, academics and other readers wanting to learn more about this important and fascinating industry.
The review articles collected in this volume present a critical assessment of particle acceleration mechanisms and observations from suprathermal particles in the magnetosphere and heliosphere to high-energy cosmic rays, thus covering a range of energies over seventeen orders of magnitude, from 103 eV to 1020 eV. The main themes are observations of accelerated populations from the magnetosphere to extragalactic scales and assessments of the physical processes underlying particle acceleration in different environments (magnetospheres, the solar atmosphere, the heliosphere, supernova remnants, pulsar wind nebulae and relativistic outflows). Several contributions review the status of shock acceleration in different environments and also the role of turbulence in particle acceleration. Observational results are compared with modelling in different parameter regimes. The book concludes with contributions on the status of particle acceleration research and its future perspectives. This volume is aimed at graduate students and researchers active in astrophysics and space science. Previously published in Space Science Reviews journal, Vol. 173 Nos. 1-4, 2012.
The book focuses on the orbital dynamics and mission trajectory (transfer or target trajectory) design of low-energy flight in the context of modern astrodynamics. It investigates various topics that either offer new methods for solving classical problems or address emerging problems that have yet to be studied, including low-thrust transfer trajectory design using the virtual gravity field method; transfer in the three-body system using invariant manifolds; formation flying under space-borne artificial magnetic fields; and the orbital dynamics of highly irregular asteroids. It also features an extensive study of the orbital dynamics in the vicinity of contact binary asteroids, including the 1:1 ground-track resonance, the equilibrium points and their stability, and the third-order analytical solution of orbital motion in the vicinity of the non-collinear equilibrium point. Given its breadth of coverage, the book offers a valuable reference guide for all engineers and researchers interested in the potential applications of low-energy space missions.
This book covers the principles, historical development, and applications of many acoustic logging methods, including acoustic logging-while-drilling and cased-hole logging methods. Benefiting from the rapid development of information technology, the subsurface energy resource industry is moving toward data integration to increase the efficiency of decision making through the use of advanced big data and artificial intelligence technologies, such as machine/deep learning. However, wellbore failure may happen if evaluations of risk and infrastructure are made using data mining methods without a complete understanding of the physics of borehole measurements. Processed results from borehole acoustic logging will constitute part of the input data used for data integration. Therefore, to successfully employ modern techniques for data assimilation and analysis, one must fully understand the complexity of wave mode propagation, how such propagation is influenced by the well, and the materials placed within the well (i.e., the cement, casing, and drill strings), and ultimately how waves penetrate into and are influenced by geological formations. State-of-the-art simulation methods, such as the discrete wavenumber integration method (DWM) and the finite difference method (FDM), are introduced to tackle the numerical challenges associated with models containing large material contrasts, such as the contrasts between borehole fluids and steel casings. Waveforms and pressure snapshots are shown to help the reader understand the wavefields under various conditions. Advanced data processing methods, including velocity analyses within the time and frequency domains, are utilized to extract the velocities of different modes. Furthermore, the authors discuss how various formation parameters influence the waveforms recorded in the borehole and describe the principles of both existing and potential tool designs and data acquisition schemes. This book greatly benefits from the research and knowledge generated over four decades at the Earth Resources Laboratory (ERL) of the Massachusetts Institute of Technology (MIT) under its acoustic logging program. Given its scope, the book is of interest to geophysicists (including borehole geophysicists and seismologists), petrophysicists, and petroleum engineers who are interested in formation evaluation and cementation conditions. In addition, this book is of interest to researchers in the acoustic sciences and to 4th-year undergraduate and postgraduate students in the areas of geophysics and acoustical physics.
Sonar performance modelling (SPM) is concerned with the prediction of quantitative measures of sonar performance, such as probability of detection. It is a multi-disciplinary subject, requiring knowledge and expertise in the disparate fields of underwater acoustics, acoustical oceanography, sonar signal processing and statistical detection theory. No books have been published on this subject, however, since the 3rd edition of Urick s classic work 25 years ago and so Dr Ainslie s book will fill a much-needed gap in the market. Currently, up-to-date information can only be found, in different forms and often with conflicting information, in various journals, conference and textbook publications. Dr Michael Ainslie is eminently qualified to write this unique book. He has worked on sonar performance modeling problems since 1983. He has written many peer reviewed research articles and conference papers related to sonar performance modeling, making contributions in the fields of sound propagation and detection theory."
This book constitutes a multidisciplinary introduction to the analysis of air defence systems. It supplies the tools to carry out independent analysis. Individual sections deal with threat missions, observability, manoeuvrability and vulnerability. With the support of several examples, the text illustrates 12 air defence process models. These models form the foundation for any air defence system analysis, covering initial detection to kill assessment.
Beginning with the basic elements that differentiate space programs from other management challenges, Space Program Management explains through theory and example of real programs from around the world, the philosophical and technical tools needed to successfully manage large, technically complex space programs both in the government and commercial environment. Chapters address both systems and configuration management, the management of risk, estimation, measurement and control of both funding and the program schedule, and the structure of the aerospace industry worldwide.
This new book synthesizes a wide range of interdisciplinary literature to provide the state-of-the art of biomedical implants. It discusses materials and explains the three basic requirements for implant success from a surface engineering perspective: biological compatibility, biomechanical compatibility, morphological compatibility. Biomedical, mechanical, and materials engineers will find this book indispensable for understanding proper treatment of implant surfaces in order to achieve clinical success. Highlights include: - Coverage of surface engineering of polymer, metallic, ceramic and composite implant materials; - Coverage of chemical, mechanical, physical, thermal, and combined surface modification technologies; - Explanations of interfacial reaction between vital tissue and non-vital implant surface; and - Methodologies and technologies for modification of surface layer/zone to promote the osteo-integration, the ultimate success for biomedical implants in both dental and medical practice.
Musical Sound, Instruments, and Equipment offers a basic understanding of sound, musical instruments and music equipment, geared towards a general audience and non-science majors. The book begins with an introduction of the fundamental properties of sound waves, and the perception of the characteristics of sound. The relation between intensity and loudness, and the relation between frequency and pitch are discussed. The basics of propagation of sound waves, and the interaction of sound waves with objects and structures of various sizes are introduced. Standing waves, harmonics and resonance are explained in simple terms, using graphics that provide a visual understanding.
This new edition of this standard work adds several new information the book, so that sound engineering and architects can better assess the acoustic value of a Rock and Pop Venue. In particular, new insights to the influence of sound absorbers in reflected and important ISO standards are included into the new edition. Based on the first ever scientific investigations on recommendable acoustics for amplified music conducted by the author, this book sets forward precise guidelines for acoustical engineers to optimize the acoustics in existing or future halls for amplified music. It Gives precise guidelines on how to design the acoustics in venues that present amplified music Debates essential construction details, including placement of sound system and use of possible building materials, in the architectural design of new venues or the renovation of old ones Portrays 75 well-known European Rock & Pop venues, their architecture and acoustic properties. 20 venues were rated for their acoustics by music professionals leading to an easy-to-use assessment methodology
In Max/MSP/Jitter for Music, expert author and music technologist
V. J. Manzo provides a user-friendly introduction to a powerful
programming language that can be used to write custom software for
musical interaction. Through clear, step-by-step instructions
illustrated with numerous examples of working systems, the book
equips you with everything you need to know in order to design and
complete meaningful music projects. The book also discusses ways to
interact with software beyond the mouse and keyboard through use of
camera tracking, pitch tracking, video game controllers, sensors,
mobile devices, and more.
As the first comprehensive and authoritative review of intra-seasonal variability (ISV), this multi-author work balances coverage of observation, theory and modeling and provides a single source of reference for all those interested in this important, multi-faceted natural phenomenon and its relation to major short-term climatic variations. Commencing with an overview of ISV and observations from an historical perspective, the book offers successive chapters that deal with the role of ISV in monsoon variability on the monsoon regions of South Asia, East Asia and South America, in North America, and in the oceans. The coupling between ocean and atmosphere is considered, together with the function of angular momentum and Earth rotation. Later chapters deal with modeling ISV in the atmosphere and oceans, and the connection between the Madden and Julian Oscillations, and El Nino/Southern Oscillation with short-term climate are considered.
Microphone arrays have attracted a lot of interest over the last few decades since they have the potential to solve many important problems such as noise reduction/speech enhancement, source separation, dereverberation, spatial sound recording, and source localization/tracking, to name a few. However, the design and implementation of microphone arrays with beamforming algorithms is not a trivial task when it comes to processing broadband signals such as speech. Indeed, in most sensor arrangements, the beamformer output tends to have a frequency-dependent response. One exception, perhaps, is the family of differential microphone arrays (DMAs) who have the promise to form frequency-independent responses. Moreover, they have the potential to attain high directional gains with small and compact apertures. As a result, this type of microphone arrays has drawn much research and development attention recently. This book is intended to provide a systematic study of DMAs from a signal processing perspective. The primary objective is to develop a rigorous but yet simple theory for the design, implementation, and performance analysis of DMAs. The theory includes some signal processing techniques for the design of commonly used first-order, second-order, third-order, and also the general "N"th-order DMAs. For each order, particular examples are given on how to form standard directional patterns such as the dipole, cardioid, supercardioid, hypercardioid, subcardioid, and quadrupole. The study demonstrates the performance of the different order DMAs in terms of beampattern, directivity factor, white noise gain, and gain for point sources. The inherent relationship between differential processing and adaptive beamforming is discussed, which provides a better understanding of DMAs and why they can achieve high directional gain. Finally, we show how to design DMAs that can be robust against white noise amplification.
This book integrates concepts from physical acoustics with those from linear viscoelasticity and fractional linear viscoelasticity. Compressional waves and shear waves in applications such as medical ultrasound, elastography, and sediment acoustics often follow power law attenuation and dispersion laws that cannot be described with classical viscous and relaxation models. This is accompanied by temporal power laws rather than the temporal exponential responses of classical models. The book starts by reformulating the classical models of acoustics in terms of standard models from linear elasticity. Then, non-classical loss models that follow power laws and which are expressed via convolution models and fractional derivatives are covered in depth. In addition, parallels are drawn to electromagnetic waves in complex dielectric media. The book also contains historical vignettes and important side notes about the validity of central questions. While addressed primarily to physicists and engineers working in the field of acoustics, this expert monograph will also be of interest to mathematicians, mathematical physicists, and geophysicists.
Roger-Maurice Bonnet*Michel Blanc Originally published in the journal Space Science Reviews, Volume 137, Nos 1-4. DOI: 10. 1007/s11214-008-9418-0 (c) Springer Science+Business Media B. V. 2008 "Planetary Atmospheric Electricity" is the rst publication of its kind in the Space Science Series of ISSI. It is the result of a new and successful joint venture between ISSI and Eu- planet. Europlanet is a network of over 110 European and U. S. laboratories deeply involved in the development of planetary sciences and support to the European planetary space exp- ration programme. In 2004, the Europlanet consortium obtained support from the European Commission to strengthen the planetary science community worldwide, and to amplify the scienti c output, impact and visibility of the European space programme, essentially the - ropean Space Agency's Horizon 2000, Cosmic Vision programmes and their successors. Its presentcontractwiththeCommissionextendsfrom2005to2008,andincludes7networking activities, including discipline-based working groups covering the main areas of planetary sciences. A new contract with the Commission, presently under negotiation, will extend - roplanet's activities into the period 2009-2012. With the broad community connection made through its Discipline Working Groups and other activities, Europlanet offers an ideal base from which to identify new elds of research for planetary sciences and to stimulate coll- orative work among its member laboratories. |
![]() ![]() You may like...
What Does it Mean to be an Empiricist…
Siegfried Bodenmann, Anne-Lise Rey
Hardcover
R3,833
Discovery Miles 38 330
Shackled - One Woman's Dramatic Triumph…
Mariam Ibraheem, Eugene Bach
Paperback
12 Rules For Life - An Antidote To Chaos
Jordan B. Peterson
Paperback
![]()
|