![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Particle & high-energy physics
Bundles, connections, metrics and curvature are the 'lingua franca'
of modern differential geometry and theoretical physics. This book
will supply a graduate student in mathematics or theoretical
physics with the fundamentals of these objects.
Semiconductor sensors patterned at the micron scale combined with custom-designed integrated circuits have revolutionized semiconductor radiation detector systems. Designs covering many square meters with million of signal channels are now commonplace in high-energy physics and the technology is finding its way into many other fields, ranging from astrophysics to experiments at synchrotron light sources and medical imaging. This book is the first to present a comprehensive discussion of the many facets of highly integrated semiconductor detectors systems, covering sensors, signal processing, transistors, and circuits, low-noise electronics, and radiation effects. The diversity of design approaches is illustrated in a chapter describing systems in high-energy physics, astronomy, and astrophysics. Finally, a chapter "Why Things Don't Work" discusses common pitfalls. Profusely illustrated, this book includes comprehensive discussions of sensors, signal processing, and electronics. Including fine tutorial material, it provides a unique reference in a key area of modern science.
Low-Energy Nuclear Reactions and New Energy is a summary of
selected experimental and theoretical research performed over the
last 19 years that gives profound and unambiguous evidence for low
energy nuclear reaction (LENR), historically known as cold fusion.
This book is on inertial confinement fusion, an alternative way to produce electrical power from hydrogen fuel by using powerful lasers or particle beams. Two huge laser facilities are presently under construction to show that this method works. It involves the compression of tiny amounts (micrograms) of fuel to thousand times solid density and pressures otherwise existing only in the centre of stars. Thanks to advances in laser technology, it is now possible to produce such extreme states of matter in the laboratory. Recent developments have boosted laser intensities again with new possibilities for laser particle accelerators, laser nuclear physics, and fast ignition of fusion targets. This is a reference book for those working on beam plasma physics, be it in the context of fundamental research or applications to fusion energy or novel ultra-bright laser sources. The book combines quite different areas of physics: beam target interaction, dense plasmas, hydrodynamic implosion and instabilities, radiative energy transfer as well as fusion reactions. Particular attention is given to simple and useful modeling, including dimensional analysis and similarity solutions. Both authors have worked in this field for more than 20 years. They want to address in particular those teaching this topic to students and all those interested in understanding the technical basis.
This textbook describes the physics of semiconductor nanostructures
with emphasis on their electronic transport properties. At its
heart are five fundamental transport phenomena: quantized
conductance, tunnelling transport, the Aharonov-Bohm effect, the
quantum Hall effect, and the Coulomb blockade effect.
Science is at a cross-roads. For several decades, the Standard Model of particle physics has managed to fit vast amounts of particle scattering data remarkably well, but many questions remain. During those decades, some sophisticated theoretical hypotheses such as string theory, quantum gravity, and quantum cosmology have been proposed and studied intensively, in an effort to break the log-jam of the Standard Model. None of those hypotheses have succeeded to date. Of greater concern is the increasing tendency by some practitioners in those fields to downplay the empirical principles of science.In response, this book is a restatement of those principles, covering numerous aspects of observation. A particular focus is on contextuality versus realism, the two fundamentally contrasting ideologies that underpin modern physics.
Muography is a term recently introduced to embrace different techniques that profit from the penetration capability of the muon component of cosmic rays to investigate the interior of large and otherwise inaccessible structures. Primary cosmic rays — high energy particles originating outside the solar system — interact with the Earth atmosphere and generate muons, particles with the same electric charge as the electron, while their mass is 200 times heavier. At the Earth's surface, cosmic muons represent the most abundant component of cosmic rays, and favourably, they can feature energies sufficiently high to penetrate even thick and dense materials, giving the opportunity of unveiling the internal structure of large volumes.Muography was made possible by the development of detectors in the field of particle physics, allowing the exploitation of this natural source for imaging in a vast variety of fields, characterizing this technique as truly interdisciplinary, and leading to significant advances in several disciplines. This book tries to cover all aspects of this methodology, with the different chapters pointing to the general physics principles, to the technological and image reconstruction challenges and to the principal applications in several fields, such as archaeology and geology but also civil and industrial applications.The volume contributors had omitted unnecessary technical details, while focusing on the main features and methodologies. Hence, the book not only targets scientists working in the field but also non-specialists, who might enjoy the reading as a tutorial.
This book is written for students who ever wondered about the mysterious and fascinating world of particle accelerators. What exciting physics and technologies lie within? What clever and ingenious ideas were applied in their seven decades of evolution? What promises still lay ahead in the future?Accelerators have been driving research and industrial advances for decades. This textbook illustrates the physical principles behind these incredible machines, often with intuitive pictures and simple mathematical models. Pure formalisms are avoided as much as possible. It is hoped that the readers would enjoy the fascinating physics behind these state-of-the-art devices.The style is informal and aimed for a graduate level without prerequisite of prior knowledge in accelerators. To serve as a textbook, references are listed only on the more established original literature and review articles instead of the constantly changing research frontiers.
Some twenty years ago the author published a book entitled The Physics of Particle Detectors. Much has evolved since that time, not in the basic physics, but in the complexity, number and versatility of the detectors commonly used in experiments, beam-lines and accelerators. Those changes have been heavily influenced by the concurrent dramatic changes in the microelectronics industry. In parallel, the use of computer-aided teaching has also greatly improved. The present volume explores the physics needed to understand the full suite of front-end devices in use today. In particular the physics explanation is made concurrently with the specific device being discussed, thus making the coupling more immediate. That study is made more interactive by using newer educational tools now available such as dynamic Matlab Apps.
A P Balachandran has a long and impressive record of research in particle physics and quantum field theory, bringing concepts of geometry, topology and operator algebras to the analysis of physical problems, particularly in particle physics and condensed matter physics. He has also had an influential role within the physics community, not only in terms of a large number of students, research associates and collaborators, but also serving on the editorial boards of important publications, including the International Journal of Modern Physics A.This book consists of articles by students and associates of Balachandran. Most of the articles are scientific in nature, with topics ranging from noncommutative geometry, particle physics phenomenology, to condensed matter physics. Various chapters focus on new perspectives and directions resulting from Balachandran's contributions to physics, as well as some reminiscences of collaborating and working with Balachandran.
Skyrmions - A Theory of Nuclei surveys 60 years of research into the brilliant and imaginative idea of Tony Skyrme that atomic nuclei can be modelled as Skyrmions, topologically stable states in an effective quantum field theory of pions. Skyrme theory emerges as a low-energy approximation to the more fundamental theory of quarks and gluons - quantum chromodynamics (QCD). Skyrmions give spatial structure to the protons and neutrons inside nuclei, and capture the interactions of these basic particles, allowing them to partially merge. Skyrme theory also gives a topological explanation for the conservation of baryon number, a fundamental principle of physics.The book summarises the particle and field theory background, then presents Skyrme field theory together with the mathematics needed to understand it. Many beautiful and surprisingly symmetric Skyrmions are described and illustrated in colour. Quantized Skyrmion motion models the momentum, energy and spin of nuclei, and also their isospin, the quantum number distinguishing protons and neutrons. Skyrmion vibrations also need to be quantized, and the book reviews how the complicated energy spectra of several nuclei, including Carbon-12 and Oxygen-16, are accurately modelled by rotational/vibrational states of Skyrmions. A later chapter explores variants of Skyrme theory, incorporating mesons heavier than pions, and extending the basic theory to include particles like kaons that contain strange quarks. The final chapter introduces the Sakai-Sugimoto model, which relates Skyrmions to gauge theory instantons in a higher-dimensional framework inspired by string theory.
This manual provides solutions to the problems given in the second edition of the textbook entitled An Introduction to the Physics of Particle Accelerators. Simple-to-solve problems play a useful role as a first check of the student's level of knowledge whereas difficult problems will test the student's capacity of finding the bearing of the problems in an interdisciplinary environment. The solutions to several problems will require strong engagement of the student, not only in accelerator physics but also in more general physical subjects, such as the profound approach to classical mechanics (discussed in Chapter 3) and the subtleties of spin dynamics (Chapter 13).
Advances in Imaging and Electron Physics merges two long-running serials-Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
Some twenty years ago the author published a book entitled The Physics of Particle Detectors. Much has evolved since that time, not in the basic physics, but in the complexity, number and versatility of the detectors commonly used in experiments, beam-lines and accelerators. Those changes have been heavily influenced by the concurrent dramatic changes in the microelectronics industry. In parallel, the use of computer-aided teaching has also greatly improved. The present volume explores the physics needed to understand the full suite of front-end devices in use today. In particular the physics explanation is made concurrently with the specific device being discussed, thus making the coupling more immediate. That study is made more interactive by using newer educational tools now available such as dynamic Matlab Apps.
This book is centered on a surprising Tevatron and LHC experimental result, the accurate equality of gauge boson and top quark energy Ew + Ez = Et. The ramifications of this unanticipated result extend down to the lower energies, and lead to two new elementary particle paradigms. The first is the use of energies E rather than masses m for analysing particle excitation patterns, where E =mc2. The second is the recognition that ground-state particle energies are generated in the form of quantized energy packets that are produced in ' -boost' energy excitations, where -1 ~137 is the fine structure constant. Repeated -boosts form a 'reservoir' of energy packets, which merge and reproduce the quantized energies of the various particle and quark ground-state configurations. An -generated energy excitation path extends upward from the electron to the top quark t. The steps in this path, which contain two -boosts, combine coherently to give the energy equation Eelectron x 18/ 2 = Et, which is accurate to 0.3%. A branching energy path reproduces the energy of the bottom quark b to 0.1%.Particle energies and lifetimes are conjugate quantities, and the -quantized particle energies are reflected in -quantized particle mean lifetimes, as revealed by lifetime plots on a logarithmic -spaced grid. The accurate factor-of-137 spacings between the classical electron radius, Compton radius, and Bohr orbit radius suggest introducing both a radial and a mass dependence into , which leads to an equation for the transformation of Coulomb energy into electron non-electromagnetic mass. The electron spin and magnetic moment are reproduced by a Compton-sized relativistically spinning sphere (RSS). The anomalous electron magnetic moment is also accounted for by the RSS, in response to Richard Feynman's 1961 Challenge to provide such an explanation. The mathematics used here is straightforward, and the calculations are guided by fits to the elementary particle RPP energy and lifetime data bases, which are provided here in Appendices A and B.
Fundamental interactions are mediated by bosonic fields, quanta of which are realized as particles. The properties of these fields typically obey certain symmetry rules. In this book we discuss the symmetry between two types of interactions - electromagnetic, which are familiar to anyone who turned on the electric lights, and weak, which govern the nuclear reactions that fuel the Sun. While there is a symmetry between these two types of interactions, it is broken. The unified theory of electroweak interactions was developed over 50 years ago. The Higgs scalar field named after one of the theorists that proposed it, is believed to be responsible for the breaking of the electroweak symmetry. Yet, it is only now after the discovery of the Higgs boson in 2012 by the LHC experiments, that we can study the mechanism of the electroweak symmetry breaking. This book discusses the theoretical developments that led to the construction of this theory, the discovery and the experimental observations that need to come to fully establish the validity of the model.
By year 1911 radioactivity had been discovered for over a decade, but its origin remained a mystery. Rutherford's discovery of the nucleus and the subsequent discovery of the neutron by Chadwick started the field of subatomic physics - a quest for understanding the fundamental constituents of matter.This book reviews the important achievements in subatomic physics in the past century. The chapters are divided into two parts: nuclear physics and particle physics. Written by renowned authors who have made major developments in the field, this book provides the academics and researchers an essential overview of the present state of knowledge in nuclear and particle physics.
Provides insights into both synchrotron light sources and colliders Discusses technical subsystems, including magnets, radio-frequency engineering, instrumentation and diagnostics, correction of imperfections, control, and cryogenics Accompanied by Matlab code, including a 3D-modeler to visualize the accelerators, and additional appendices which are available on the CRC Press website
Lattice field theory is the most reliable tool for investigating non-perturbative phenomena in particle physics. It has also become a cross-discipline, overlapping with other physical sciences and computer science. This book covers new developments in the area of algorithms, statistical physics, parallel computers and quantum computation, as well as recent advances concerning the standard model and beyond, the QCD vacuum, the glueball, hadron and quark masses, finite temperature and density, chiral fermions, SUSY, and heavy quark effective theory.
This book provides a coherent and comprehensive overview of the generation and application of mono-energetic positron beams. It has been written by acknowledged experts, at a level accessible to graduate students working, or planning to work, with positron beams, and to scientists in other areas who want to know something about the field. The book begins with a brief historical introduction and an overview of how positron beams are generated and transported. A description of the fate of slow positrons in gaseous and condensed matter, with reference to many of the fundamental measurements made possible by the advent of positron beams, is followed by a discussion on applications in the study of solid surfaces, defect profiling in subsurface regions, interfaces and thin films, and the probing of bulk properties in novel ways. The book ends with a look at the future, considering the prospects for intense positron beams and their potential for further research.
Advances in Imaging and Electron Physics merges two long-running serials-Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
Optically Stimulated Luminescence (OSL) has become the technique of choice for many areas of radiation dosimetry. The technique is finding widespread application in a variety of radiation dosimetry fields, including personal monitoring, environmental monitoring, retrospective dosimetry (including geological dating and accident dosimetry), space dosimetry, and many more. In this book we have attempted to synthesize the major advances in the field, covering both fundamental understanding and the many applications. The latter serve to demonstrate the success and popularity of OSL as a dosimetry method.
an integrated approach to electron transfer phenomena
Decaying Two-dimensional Turbulence; W.R. Young. Experiments in 1D Turbulence; F. Daviaud. Experiments on 2D Turbulence; (Laboratory) P. Tabeling. Experiments on Spatiotemporal Chaos in Two Dimensions J.P. Gollub. Extended Self Similarity; S. Ciliberto. Hot Wire Anemometry: An Overview in Turbulence Research-Present and Future; A. Tsinober. Intermittency (Random Cascade Models, Multifractality and Large Deviations); U.Frisch. Numerical Simulations (Direct); M.E. Brachet. Numerical Simulations of Twodimensional Flows; (Turbulence and Vortices); B. Legras. Optical Turbulence; A.C. Newell, V.E. Zakharov. Phase Turbulence; H. Chate, P. Manneville. Predictability in Turbulence; G. Paladin, et al. Probability Density Functions in 3D Turbulence; B. Castaing. Rayleigh-Benard Turbulent Convection; A. Tilgner, et al. Scaling in Hydrodynamics; L.P. Kadanoff. Spatiotemporal Intermittency; H. Chate, P. Manneville. Vorticity Filaments; Y. Couder, et al. 6 additional articles. Index. |
![]() ![]() You may like...
|