![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Particle & high-energy physics
This textbook summarizes the basic knowledge of atomic, nuclear, and radiation physics that professionals working in medical physics and biomedical engineering need for efficient and safe use of ionizing radiation in medicine. Concentrating on the underlying principles of radiation physics, the textbook covers the prerequisite knowledge for medical physics courses on the graduate and post-graduate levels in radiotherapy physics, radiation dosimetry, imaging physics, and health physics, thus providing the link between elementary undergraduate physics and the intricacies of four medical physics specialties: diagnostic radiology physics, nuclear medicine physics, radiation oncology physics, and health physics. To recognize the importance of radiation dosimetry to medical physics three new chapters have been added to the 14 chapters of the previous edition. Chapter 15 provides a general introduction to radiation dosimetry. Chapter 16 deals with absolute radiation dosimetry systems that establish absorbed dose or some other dose related quantity directly from the signal measured by the dosimeter. Three absolute dosimetry techniques are known and described in detail: (i) calorimetric; (ii) chemical (Fricke), and (iii) ionometric. Chapter 17 deals with relative radiation dosimetry systems that rely on a previous dosimeter calibration in a known radiation field. Many relative radiation dosimetry systems have been developed to date and four most important categories used routinely in medicine and radiation protection are described in this chapter: (i) Ionometric dosimetry; (ii) Luminescence dosimetry; (iii) Semiconductor dosimetry; and (iv) Film dosimetry. The book is intended as a textbook for a radiation physics course in academic medical physics graduate programs as well as a reference book for candidates preparing for certification examinations in medical physics sub-specialties. It may also be of interest to many professionals, not only physicists, who in their daily occupations deal with various aspects of medical physics or radiation physics and have a need or desire to improve their understanding of radiation physics.
Quantum Field Theory has become the universal language of most modern theoretical physics. This introductory textbook shows how this beautiful theory offers the correct mathematical framework to describe and understand the fundamental interactions of elementary particles. The book begins with a brief reminder of basic classical field theories, electrodynamics and general relativity, as well as their symmetry properties, and proceeds with the principles of quantisation following Feynman's path integral approach. Special care is used at every step to illustrate the correct mathematical formulation of the underlying assumptions. Gauge theories and the problems encountered in their quantisation are discussed in detail. The last chapters contain a full description of the Standard Model of particle physics and the attempts to go beyond it, such as grand unified theories and supersymmetry. Written for advanced undergraduate and beginning graduate students in physics and mathematics, the book could also serve as a reference for active researchers in the field.
This revised edition of the author's classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter - including free charged particles and antiparticles, acceleration beams, plasma and plasmous media. The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pulses of ultrarelativistic intensities. The only book devoted to the subject of relativistic nonlinear electrodynamics, this second edition will be a valuable resource for graduate students and researchers involved in any aspect of the field, including those working with intense x-ray - gamma-ray lasers, the new generation of small size laser-plasma accelerators of superhigh energies and high-brightness particle beams.
First Snow White encounters one of the Little People, then one of the Even Smaller People, and finally one of the Truly Infinitesimal People. And no matter how diligently she searches, the only dwarves she can find are collapsed stars! Clearly, she's not at home in her well-known Brothers Grimm fairy tale, but instead in a strange new landscape that features quantum behavior, the wavelike properties of particles, and the Uncertainty Principle. She (and we) must have entered, in short, one of the worlds created by Robert Gilmore, physicist and fabulist.
This thesis presents theoretical and numerical studies on phenomenological description of the quark gluon plasma (QGP), a many-body system of elementary particles. The author formulates a causal theory of hydrodynamics for systems with net charges from the law of increasing entropy and a momentum expansion method. The derived equation results can be applied not only to collider physics, but also to the early universe and ultra-cold atoms. The author also develops novel off-equilibrium hydrodynamic models for the longitudinal expansion of the QGP on the basis of these equations. Numerical estimations show that convection and entropy production during the hydrodynamic evolution are key to explaining excessive charged particle production, recently observed at the Large Hadron Collider. Furthermore, the analyses at finite baryon density indicate that the energy available for QGP production is larger than the amount conventionally assumed. "
This monograph presents research on the transversal beam dynamics of accelerators and evaluates and describes the respective magnetic field homogeneity. The widely used cylindrical circular multipoles have disadvantages for elliptical apertures or curved trajectories, and the book also introduces new types of advanced multipole magnets, detailing their application, as well as the numerical data and measurements obtained. The research presented here provides more precise descriptions of the field and better estimates of the beam dynamics. Moreover, the effects of field inhomogeneity can be estimated with higher precision than before. These findings are further elaborated to demonstrate their usefulness for real magnets and accelerator set ups, showing their advantages over cylindrical circular multipoles. The research findings are complemented with data obtained from the new superconducting beam guiding magnet models (SIS100) for the FAIR (Facility for Antiproton and Ion Research) project. Lastly, the book offers a comprehensive survey of error propagation in multipole measurements and an appendix with Mathematica scripts to calculate advanced magnetic coil designs.
This book describes in detail the relationship between radiometry and photometry. It covers information needed to solve problems in radiation transfer and detection, detectors, measuring instruments, and concepts in colorimetry.
Single-photon generation and detection is at the forefront of
modern optical physics research. This book is intended to provide a
comprehensive overview of the current status of single-photon
techniques and research methods in the spectral region from the
visible to the infrared. The use of single photons, produced on
demand with well-defined quantum properties, offers an
unprecedented set of capabilities that are central to the new area
of quantum information and are of revolutionary importance in areas
that range from the traditional, such as high sensitivity detection
for astronomy, remote sensing, and medical diagnostics, to the
exotic, such as secretive surveillance and very long communication
links for data transmission on interplanetary missions. The goal of
this volume is to provide researchers with a comprehensive overview
of the technology and techniques that are available to enable them
to better design an experimental plan for its intended purpose. The
book will be broken into chapters focused specifically on the
development and capabilities of the available detectors and sources
to allow a comparative understanding to be developed by the reader
along with and idea of how the field is progressing and what can be
expected in the near future. Along with this technology, we will
include chapters devoted to the applications of this technology,
which is in fact much of the driver for its development. This is
set to become the go-to reference for this field. Covers all the basic aspects needed to perform single-photon experiments and serves as the first reference to any newcomer who would like to produce an experimental design that incorporates the latest techniques Provides a comprehensive overview of the current status of single-photon techniques and research methods in the spectral region from the visible to the infrared, thus giving broad background that should enable newcomers to the field to make rapid progress in gaining proficiency Written by leading experts in the field, among which, the leading Editor is recognized as having laid down the roadmap, thus providing the reader with an authenticated and reliable source
This thesis considers the non-equilibrium and energy transfer processes involved in the evolution of astrophysical gases and plasmas. Momentum-energy transfer in collisions of atoms, molecules and ions governs the evolution of interacting astrophysical gas and plasmas. These collisions require an accurate quantum mechanical description and the work presented here develops a unified kinetic and quantum-mechanical model for this consideration. The multi-scale computational approach implemented here takes into account non-thermal distributions of atomic particles and clarifies their role in the evolution of interstellar gas and planetary atmospheres. As shown, the physical parameters of non-thermal distributions strongly depend on the differential cross sections of atomic, molecular and ion collisions. Readers will find a detailed description of the energy relaxation of energetic atoms, produced in the interstellar gas by the solar and stellar wind plasmas. Computation of the non-thermal diffuse background of energetic helium atoms in the heliosphere is also included for evaluation of the contributions from local and cosmic sources and analysis of related satellite observations. Work involving modeling of energetic particle precipitation into planetary atmospheres and formation of the planetary and exoplanetary escape fluxes has been performed with very accurate cross sections, describing momentum-energy transfer processes with high precision. Results of the Monte Carlo simulations, carried out for the Mars atmosphere at different solar conditions, can be used for analysis of observational data for Mars atmospheric escape and investigation into the history of Martian water.
This work covers in some detail the application of neutron scattering to different fields of physics, materials science, chemistry, biology, the earth sciences and engineering. Its goal is to enable researchers in a particular area to identify aspects of their work in which neutron scattering techniques might contribute, conceive the important experiments to be done, assess what is required to carry them out, write a successful proposal for one of the major user facilities, and perform the experiments under the guidance of the appropriate instrument scientist. The authors of the various chapters take account of the advances
in experimental techniques over the past 25 years--for example,
neutron reflectivity and spin-echo spectroscopy and techniques for
probing the dynamics of complex materials and biological systems.
Furthermore, with the third-generation spallation sources recently
constructed in the United States and Japan and in the advanced
planning stage in Europe, there is an increasing interest in
time-of-flight techniques and short wavelengths. Correspondingly,
the improved performance of cold moderators at both reactors and
spallation sources has extended the long-wavelength
capabilities.
This book is exceptional in offering a thorough but accessible introduction to calorimetry that will meet the needs of both students and researchers in the field of particle physics. It is designed to provide the sound knowledge of the basics of calorimetry and of calorimetric techniques and instrumentation that is mandatory for any physicist involved in the design and construction of large experiments or in data analysis. An important feature is the correction of a number of persistent common misconceptions. Among the topics covered are the physics and development of electromagnetic showers, electromagnetic calorimetry, the physics and development of hadron showers, hadron calorimetry, and calibration of a calorimeter. Two chapters are devoted to more promising calorimetric techniques for the next collider. Calorimetry for Collider Physics, an introduction will be of value for all who are seeking a reliable guide to calorimetry that occupies the middle ground between the brief chapter in a generic book on particle detection and the highly complex and lengthy reference book.
By year 1911 radioactivity had been discovered for over a decade, but its origin remained a mystery. Rutherford's discovery of the nucleus and the subsequent discovery of the neutron by Chadwick started the field of subatomic physics - a quest for understanding the fundamental constituents of matter.This book reviews the important achievements in subatomic physics in the past century. The chapters are divided into two parts: nuclear physics and particle physics. Written by renowned authors who have made major developments in the field, this book provides the academics and researchers an essential overview of the present state of knowledge in nuclear and particle physics.
Heavy electrons are found among a number of lanthanide and actinide compounds, and are characterized by a large effective mass which becomes comparable to the mass of a muon. Heavy electrons exhibit rich phenomena such as unconventional superconductivity, weak anti- ferromagnetism, or pseudo meta-magnetism. This book is intended not only as a monograph, but can readily serve as an advanced textbook on theoretical and experimental physics of strongly correlated electrons. Over the last two decades, heavy electrons have been the focus of very active experimental and theoretical studies. Many established ideas and techniques have been insufficient to describe and understand heavy electrons and their impact properly. On the theoretical side, quantum fluctuations make mean-field theories difficult to handle, while on the experimental side, extreme conditions such as strong magnetic fields and pressure at ultra-low temperatures may be required. Heavy electron systems as described in this book offer a case study for applying and testing most of the major tools in theoretical and experimental condensed matter physics. Graduate students and researchers working on strongly correlated condensed matter systems will find in this book a comprehensive introduction and many examples how conventional concepts of solids may work or not work, and how they can be refined and sharpened in the context of heavy electron systems.
This book presents the proceedings of the 2nd Karl Schwarzschild Meeting on Gravitational Physics, focused on the general theme of black holes, gravity and information.Specialists in the field of black hole physics and rising young researchers present the latest findings on the broad topic of black holes, gravity, and information, highlighting its applications to astrophysics, cosmology, particle physics, and strongly correlated systems.
This book mainly investigates the precision predictions on the signal of new physics at the Large Hadron Collider (LHC) in the perturbative Quantum Chromodynamics (QCD) scheme. The potential of the LHC to discover the signal of dark matter associated production with a photon is studied after including next-to-leading order QCD corrections. The factorization and resummation of t-channel top quark transverse momentum distribution in the standard model at both the Tevatron and the LHC with soft-collinear effective theory are presented. The potential of the early LHC to discover the signal of monotops is discussed. These examples illustrate the method of searching for new physics beyond what is known today with high precision.
In 1980, the Cold War was in full bloom. The Soviet father of the hydrogen bomb and Nobel Peace Laureate turned dissident physicist, Andrei Sakharov, had been exiled to Gorki by the Soviet authorities. Called "senile" and under heavy Soviet censorship, Sakharov had a hard time communicating his latest scientific results to readers outside of Gorki. Some smuggled results reached the author, Harry Lipkin, who then realized that he and Sakharov were both pioneers in a new revolution on our understanding the structure of matter. The particle physics community had resisted their revelation that the accepted building blocks of matter, neutrons and protons, were composed of tinier building blocks called "quarks". What followed was a remarkable adventure in which both scientists fought the Soviet censors, smuggling postcards and manuscripts into and out of the Soviet Union while trying to further scientific progress.Against a backdrop of politics, suppression, and genius, Andrei Sakharov, Quarks and the Structure of Matter details the search for the basic building blocks of matter, the path to understanding the forces that bind them together, and how scientific knowledge is learned, communicated and passed from one group of investigators to another.
"Fusion: The Energy of the Universe, 2e"is an essential
reference providing basic principles of fusion energy from its
history to the issues and realities progressing from the present
day energy crisis. The book provides detailed developments and
applications for researchers entering the field of fusion energy
research. This second edition includes the latest results from the
National Ignition Facility at the Lawrence Radiation Laboratory at
Livermore, CA, and the progress on the International Thermonuclear
Experimental Reactor (ITER) tokamak programme at Caderache,
France.
Proceedings of the Thirteenth Latin American Conference on the Applications of the Moessbauer Effect, Medellin, Colombia, November 11-16, 2012. The broad scope of the Applications of the Moessbauer Effect to interdisciplinary subjects makes this volume an outstanding source of information to researchers and graduate students, who will find the unique results of Moessbauer spectroscopy a valuable aid and complement to their research in conjunction with other techniques. In this volume, applications to mineralogy, catalysis, soil science, amorphous materials, nanoparticles, magnetic materials, nanotechnology, metallurgy, corrosion, and magnetism, have been put together in original works produced by invited speakers and different research teams across the continent. Reprinted from Hyperfine Interactions (HYPE) Volume
The top quark is by far the heaviest known fundamental particle with a mass nearing that of a gold atom. Because of this strikingly high mass, the top quark has several unique properties and might play an important role in electroweak symmetry breaking-the mechanism that gives all elementary particles mass. Creating top quarks requires access to very high energy collisions, and at present only the Tevatron collider at Fermilab is capable of reaching these energies. Until now, top quarks have only been observed produced in pairs via the strong interaction. At hadron colliders, it should also be possible to produce single top quarks via the electroweak interaction. Studies of single top quark production provide opportunities to measure the top quark spin, how top quarks mix with other quarks, and to look for new physics beyond the standard model. Because of these interesting properties, scientists have been looking for single top quarks for more than 15 years. This thesis presents the first discovery of single top quark production. It documents one of the flagship measurements of the D0 experiment, a collaboration of more than 600 physicists from around the world. It describes first observation of a physical process known as "single top quark production," which had been sought for more than 10 years before its eventual discovery in 2009. Further, his thesis describes, in detail, the innovative approach Dr. Gillberg took to this analysis. Through the use of Boosted Decision Trees, a machine-learning technique, he observed the tiny single top signal within an otherwise overwhelming background. This Doctoral Thesis has been accepted by Simon Fraser University, Burnaby, BC, Canada."
This book is based on the author's work at the Double Chooz Experiment, from 2010 to 2013, the goal of which was to search for electronic anti-neutrino disappearance close to nuclear power plant facilities as a result of neutrino oscillation. Starting with a brief review of neutrino oscillation and the most important past experimental findings in this field, the author subsequently provides a full and detailed description of a neutrino detector, from simulation aspects to detection principles, as well as the data analysis procedure used to extract the oscillation parameters. The main results in this book are 1) an improvement on the mixing angle, 13, uncertainty by combining two data-sets from neutrino event selection: neutron capture on gadolinium and on hydrogen; and 2) the first measurement of the effective squared mass difference by combining the current reactor neutrino experimental data from Daya Bay, Double Chooz and RENO and taking advantage of their different reactor-to-detector distances. The author explains how these methods of combining data can be used to estimate these two values. Each method results in the best possible sensitivity for the oscillation parameters with regard to reactor neutrinos. They can be used as a standard method on the latest data releases from the current experiments.
The main goal of the book is to provide a systematic and didactic approach to the physics and technology of free-electron lasers. Numerous figures are used for illustrating the underlying ideas and concepts and links to other fields of physics are provided. After an introduction to undulator radiation and the low-gain FEL, the one-dimensional theory of the high-gain FEL is developed in a systematic way. Particular emphasis is put on explaining and justifying the various assumptions and approximations that are needed to obtain the differential and integral equations governing the FEL dynamics. Analytical and numerical solutions are presented and important FEL parameters are defined, such as gain length, FEL bandwidth and saturation power. One of the most important features of a high-gain FEL, the formation of microbunches, is studied at length. The increase of gain length due to beam energy spread, space charge forces, and three-dimensional effects such as betatron oscillations and optical diffraction is analyzed. The mechanism of Self-Amplified Spontaneous Emission is described theoretically and illustrated with numerous experimental results. Various methods of FEL seeding by coherent external radiation are introduced, together with experimental results. The world s first soft X-ray FEL, the user facility FLASH at DESY, is described in some detail to give an impression of the complexity of such an accelerator-based light source. The last chapter is devoted to the new hard X-ray FELs which generate extremely intense radiation in the Angstrom regime. The appendices contain supplementary material and more involved calculations."
This thesis is based on the first data from the Large Hadron Collider (LHC) at CERN. Its theme can be described as the classical Rutherford scattering experiment adapted to the LHC: measurement of scattering angles to search for new physics and substructure. At the LHC, colliding quarks and gluons exit the proton collisions as collimated particle showers, or jets. The thesis presents studies of the scattering angles of these jets. It includes a phenomenological study at the LHC design energy of 14 TeV, where a model of so-called large extra dimensions is used as a benchmark process for the sensitivity to new physics. The experimental result is the first measurement, made in 2010, by ATLAS, operating at the LHC start-up energy of 7 TeV. The result is compatible with the Standard Model and demonstrates how well the physics and the apparatus are understood. The first data is a tiny fraction of what will be accumulated in the coming years, and this study has set the stage for performing these measurements with confidence as the LHC accumulates luminosity and increases its energy, thereby probing smaller length scales.
This manual provides solutions to the problems given in the second edition of the textbook entitled An Introduction to the Physics of Particle Accelerators. Simple-to-solve problems play a useful role as a first check of the student's level of knowledge whereas difficult problems will test the student's capacity of finding the bearing of the problems in an interdisciplinary environment. The solutions to several problems will require strong engagement of the student, not only in accelerator physics but also in more general physical subjects, such as the profound approach to classical mechanics (discussed in Chapter 3) and the subtleties of spin dynamics (Chapter 13).
This Ph.D. thesis is a search for physics beyond the standard model (SM) of particle physics, which successfully describes the interactions and properties of all known elementary particles. However, no particle exists in the SM that can account for the dark matter, which makes up about one quarter of the energy-mass content of the universe. Understanding the nature of dark matter is one goal of the CERN Large Hadron Collider (LHC). The extension of the SM with supersymmetry (SUSY) is considered a promising possibilities to explain dark matter. The nominated thesis describes a search for SUSY using data collected by the CMS experiment at the LHC. It utilizes a final state consisting of a photon, a lepton, and a large momentum imbalance probing a class of SUSY models that has not yet been studied extensively. The thesis stands out not only due to its content that is explained with clarity but also because the author performed more or less all aspects of the thesis analysis by himself, from data skimming to limit calculations, which is extremely rare, especially nowadays in the large LHC collaborations.
This volume contains the proceedings of the 5th International Symposium on Symmetries in Subatomic Physics (SSP2012), that was held in Groningen, The Netherlands from 18 till 22 June 2012. This sequence of symposia is now firmly connected with one of the main branches in fundamental nuclear and particle physics, i.e. in searches for physics beyond the Standard Model, focused on the (violation of) the discrete symmetries of Parity, Charge conjugation and Time reversal invariance. This field comes in various disguises: With large experimental facilities and large collaborations, as in LHC physics or in neutrino experiments, but also as table top experiments by small groups in the field of nuclear, atomic and molecular physics, such as in searches for a permanent electric dipole moments and atomic parity violation. Bringing the practitioners of these divergent fields together gives a coherent overview and see the complementarities of the various approaches to the same question: why is the Standard Model what it is and what lies beyond it. " |
You may like...
Recent Trends in Computer-aided…
Saptarshi Chatterjee, Debangshu Dey, …
Paperback
R2,570
Discovery Miles 25 700
The Accidental Mayor - Herman Mashaba…
Michael Beaumont
Paperback
(5)
Modeling and Control for a Blended Wing…
Martin Kozek, Alexander Schirrer
Hardcover
Disciple - Walking With God
Rorisang Thandekiso, Nkhensani Manabe
Paperback
(1)
A Sword for the Convicted - Representing…
David Wasserman
Hardcover
Faith, Life, and Learning Online
Brant M Himes, John W Washatka
Hardcover
DNA In The Courtroom - Principles And…
Lirieka Meintjes-van der Walt
Paperback
|