![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Particle & high-energy physics
This book explores the relaxation dynamics of inner-valence-ionized diatomic molecules on the basis of extreme-ultraviolet pump-probe experiments performed at the free-electron laser (FEL) in Hamburg. Firstly, the electron rearrangement dynamics in dissociating multiply charged iodine molecules is studied in an experiment that made it possible to access charge transfer in a thus far unexplored quasimolecular regime relevant for plasma and chemistry applications of the FEL. Secondly the lifetime of an efficient non-radiative relaxation process that occurs in weakly bound systems is measured directly for the first time in a neon dimer (Ne2). Interatomic Coulombic decay (ICD) has been identified as the dominant decay mechanism in inner-valence-ionized or excited van-der-Waals and hydrogen bonded systems, the latter being ubiquitous in all biomolecules. The role of ICD in DNA damage thus demands further investigation, e.g. with regard to applications like radiation therapy.
This book offers a detailed guide on the journey towards the minimal supersymmetric standard model down the orbifold road. It takes the viewpoint that the chirality of matter fermions is an essential aspect that orbifold compactification allows to derive from higher-dimensional string theories in a straightforward manner. Halfway between textbook and tutorial review, the book is intended for the graduate student and particle phenomenologist wishing to get acquainted with this field.
White dwarfs, neutron stars, and (solar mass) black holes are the collapsed cores of stars which, near the ends of their luminous lives, have shed most of their mass in supernova explosions or other, less spectacular, instabilities. Here gravity crushes matter to realms that lie far beyond present empirical knowledge. This book explores the diverse forms that such compact stars can possibly take, as constrained by the laws of nature: the general principles of relativity and quantum mechanics, the properties of nuclear matter deduced from nuclei, and the asymptotic freedom of quarks at high density. The book is self contained. It reviews general relativity, essential aspects of nuclear and particle physics, and general features of white dwarfs, neutron stars and black holes; it includes background on such matters as stellar formation and evolution, the discovery of pulsars and associated phenomena, and the strange-matter hypothesis. The book develops a theory for the constitution of neutron stars and the more exotic Hyperon Stars, Hybrid Stars (containing a quark matter core surrounded by an intricate lattice of quark and hadronic matter) and Strange Stars and Dwarfs (composed of the three light quark flavors sheathed in a solid skin of heavy ions). This second edition has been revised throughout to clarify discussions and bring data up to date; it includes new figures, several new sections, and new chapters on Bose condensates in neutron stars and on phase transitions.
Gamma-ray astronomy began in the mid-1960s with balloon satellite, and, at very high photon energies, also with ground-based instruments. However, the most significant progress was made in the last decade of the 20th century, when the tree satellite missions SIGMA, Compton, and Beppo-Sax gave a completely new picture of our Universe and made gamma-ray astronomy an integral part of astronomical research. This book, written by well-known experts, gives the first comprehensive presentation of this field of research, addressing both graduate students and researchers. Gamma-ray astronomy helps us to understand the most energetic processes and the most violent events in the Universe. After describing cosmic gamma-ray production and absorption, the instrumentation used in gamma-ray astronomy is explained. The main part of the book deals with astronomical results, including the somewhat surprising result that the gamma-ray sky is continuously changing.
The outcome of a close collaboration between mathematicians and mathematical physicists, these Lecture Notes present the foundations of A. Connes noncommutative geometry, as well as its applications in particular to the field of theoretical particle physics. The coherent and systematic approach makes this book useful for experienced researchers and postgraduate students alike.
This collection of lectures and essays by eminent researchers in the field, many of them nobel laureates, is an outgrow of a special event held at CERN in late 2009, coinciding with the start of LHC operations. Careful transcriptions of the lectures have been worked out, subsequently validated and edited by the lecturers themselves. This unique insight into the history of the field includes also some perspectives on modern developments and will benefit everyone working in the field, as well as historians of science.
The centerpiece of the thesis is the search for muon neutrino to electron neutrino oscillations which would indicate a non-zero mixing angle between the first and third neutrino generations ( 13), currently the holy grail of neutrino physics. The optimal extraction of the electron neutrino oscillation signal is based on the novel library event matching (LEM) method which Ochoa developed and implemented together with colleagues at Caltech and at Cambridge, which improves MINOS (Main Injector Neutrino Oscillator Search) reach for establishing an oscillation signal over any other method. LEM will now be the basis for MINOS final results, and will likely keep MINOS at the forefront of this field until it completes its data taking in 2011. Ochoa and his colleagues also developed the successful plan to run MINOS with a beam tuned for antineutrinos, to make a sensitive test of CPT symmetry by comparing the inter-generational mass splitting for neutrinos and antineutrinos. Ochoa s in-depth, creative approach to the solution of a variety of complex experimental problems is an outstanding example for graduate students and longtime practitioners of experimental physics alike. Some of the most exciting results in this field to emerge in the near future may find their foundations in this thesis.
This review volume is intended to survey the field of quantum fluctuational phenomena induced by material bodies, which is commonly encompassed under the name of Casimir physics. H B G Casimir first discovered that zero-point fluctuations in the electromagnetic field caused an attractive force between closely separated metallic plates. Now - 75 years later - the field is burgeoning, with numerous experimental verifications and applications to practical devices starting to emerge.In this book, new ideas about Casimir physics are brought to bear on such diverse subjects as cosmology, where the Casimir energy may explain the dark energy that causes the cosmic repulsion, and nonstatic regimes, such as Casimir or quantum friction. Unsolved problems, including divergences in Casimir self-energies, the meaning of local energy densities in inhomogeneous backgrounds, and discrepancies between theory and experiment, are treated in some detail. It is hoped that this collection of papers will serve as an introduction to the field for newcomers to the subject, and that it will inspire a new burst of research into the nature of the quantum vacuum.
The nature of dark matter remains one of the preeminent mysteries in physics and cosmology. It appears to require the existence of new particles whose interactions to ordinary matter are extraordinarily feeble. One well-motivated candidate is the axion, an extraordinarily light neutral particle that may possibly be detected by looking for their conversion to detectable microwaves in the presence of a strong magnetic field. This has led to a number of experimental searches that are beginning to probe plausible axion model space and may discover the axion in the near future. These proceedings discuss the challenges of designing and operating tunable resonant cavities and detectors at ultralow temperatures. The topics discussed here have potential application far beyond the field of dark matter detection and may be applied to resonant cavities for accelerators as well as designing superconducting detectors for quantum information and computing applications. This work is intended for graduate students and researchers interested in learning the unique requirements for designing and operating microwave cavities and detectors for direct axion searches and to introduce several proposed experimental concepts that are still in the prototype stage.
Written by world-leading experts in particle physics, this new book from Luciano Maiani and Omar Benhar, with contributions from the late Nicola Cabibbo, is based on Feynman's path integrals. Key elements of gauge theories are described-Feynman diagrams, gauge-fixing, Faddeev-Popov ghosts-as well as renormalization in Quantum Electrodynamics. Quarks and QCD interactions are introduced. Renormalization group and high momentum behaviour of the coupling constants is discussed in QED and QCD, with asymptotic freedom derived at one-loop. These concepts are related to the Higgs boson and models of grand unification. "... an excellent introduction to the quantum theory of gauge fields and their applications to particle physics. ... It will be an excellent book for the serious student and a good reference for the professional practitioner. Let me add that, scattered through the pages, we can find occasional traces of Nicola Cabibbo's style." -John Iliopoulos, CNRS-Ecole Normale Superieure " ... The volume ends with an illuminating description of the expectation generated by the recent discovery of the Higgs boson, combined with the lack of evidence for super-symmetric particles in the mass range 0.6-1 TeV." -Arturo Menchaca-Rocha, FinstP, Professor of Physics, Mexico's National Autonomous University, Former President of the Mexican Academy of Sciences, Presidential Advisor "...The reader is masterfully guided through the subtleties of the quantum field theory and elementary particle physics from simple examples in Quantum Mechanics to salient details of modern theory." -Mikhail Voloshin, Professor of Physics, University of Minnesota
Periodic magnetic structures (undulators) are widely used in accelerators to generate monochromatic undulator radiation (UR) in the range from far infrared to the hard X-ray region. Another periodic crystalline structure is used to produce quasimonochromatic polarized photon beams via the coherent bremsstrahlung mechanism (CBS). Due to such characteristics as monochromaticity, polarization and adjustability, these types of radiation is of large interest for applied and basic research of accelerator-emitted radiation. The book provides a detailed overview of the fundamental principles behind electromagnetic radiation emitted from accelerated charged particles (e.g. UR, CBS, radiation of fast electrons in Laser flash fields) as well as a unified description of relatively new radiation mechanisms which attracted great interest in recent years. This are the so-called polarization radiation excited by the Coulomb field of incident particles in periodic structures, parametric X-rays, resonant transition radiation and the Smith-Purcell effect. Characteristics of such radiation sources and perspectives of their usage are discussed. The recent experimental results as well as their interpretation are presented.
Filling a gap in the current literature, this book is the first entirely dedicated to high energy quantum chromodynamics (QCD) including parton saturation and the color glass condensate (CGC). It presents groundbreaking progress on the subject and describes many problems at the forefront of research, bringing postgraduate students, theorists and interested experimentalists up to date with the current state of research in this field. The material is presented in a pedagogical way, with numerous examples and exercises. Discussion ranges from the quasi-classical McLerran-Venugopalan model to the linear BFKL and nonlinear BK/JIMWLK small-x evolution equations. The authors adopt both a theoretical and an experimental outlook, and present the physics of strong interactions in a universal way, making it useful for physicists from various subcommunities of high energy and nuclear physics, and applicable to processes studied at all high energy accelerators around the world. A selection of color figures is available online at www.cambridge.org/9780521112574.
Recent groundbreaking discoveries in physics, including the discovery of the Higgs Boson and gravitational waves, have relied on chi-squared analysis and model testing, a data analysis method. This is the first book to make chi-squared model testing accessible to students in introductory physics lab courses and others who need to learn this method, such as beginning researchers in astrophysics and particle physics, beginners in data science, and lab students in other experimental sciences. For over a decade, Harvard University's introductory physics lab sequence has made chi-squared model testing its central theme. Written by two faculty members, the book is based on years of experience teaching students learn how to think like scientists by testing their models using chi-squared analysis. By including uncertainties in the curve fitting technique, chi-squared data analysis improves on the centuries old ordinary least squares and linear regression methods and combines best fit parameter estimation and model testing in one method. A toolkit of essential statistical and experimental concepts is developed from the ground up with novel features to interest even those familiar with the material. The presentation of one and two parameter chi-squared model testing, requiring only elementary probability and algebra, is followed by case studies that apply the methods to simple introductory physics lab experiments. More challenging topics requiring calculus are addressed in an advanced topic chapter. This self-contained and student-friendly introduction includes a glossary, end of chapter problems with complete solutions, and software scripts available in several popular programming languages that the reader can use for chi-squared model testing.
Get ready to take another fantastic journey with physicist and author Robert Gilmore, this time with Dorothy, following the yellow building block road through the land of the Wizard of Quarks. Using characters and situations based on the universally known story, The Wizard of Oz, we learn along the way about the fascinating world of particle physics. Classes of particles, from quarks to leptons are shown in atomic garden, where atoms and molecules are produced; see how Dorothy, The Tin Geek, and the Cowardly Lion experience the bizarre world of subatomic particles. Thousands of readers who were delighted by the adventures and science content of Alice in Quantumland are in for another treat, with the prose and illustrations of Robert Gilmore.
It is arguable that most of chemistry and a large portion of atomic physics is concemed with the behaviour of the 92 naturally occurring elements in each of 3 charge states (+1, 0, -1); 276 distinct species. The world of multiply and highly charged ions provides a further 4186 species for us to study. Over 15 times as many It is the nature of human beings to explore the unknown. This nature is par ticularly strong in physicists although this may not be readily apparent because theses explorations are undertaken in somewhat abstract 'spaces'. It is, then, no surprise that we have begun to explore the realm of multiply and highly charged ions. Over the past few decades, a consistent1y high quality body of work has emerged as the fruits of this exploration. This intemationally based subject, pursued in universities and research laboratories worldwide, has ex panded beyond its roots in atomic physics. We now see it embracing elements of surface science, nuclear physics and plasma physics as well as drawing on a wide range of technologies. This speciality offers new tests of some of our most fundamental ideas in physics and simultaneously new medical cures, new ways of fabricating electronic gadgets, a major hope for clean sustainable energy and explanations for astrophysical phenomena. It is both a deeply fundamental and a widely applicable area of investigation."
This book is devoted to one of the most active domains of atomic physic- atomic physics of heavy positive ions. During the last 30 years, this terrain has attracted enormous attention from both experimentalists and theoreti cians. On the one hand, this interest is stimulated by rapid progress in the development of laboratory ion sources, storage rings, ion traps and methods for ion cooling. In many laboratories, a considerable number of complex and accurate experiments have been initiated, challenging new frontiers. Highly charged ions are used for investigations related to fundamental research and to more applied fields such as controlled nuclear fusion driven by heavy ions and its diagnostics, ion-surface interaction, physics of hollow atoms, x-ray lasers, x-ray spectroscopy, spectrometry of ions in storage rings and ion traps, biology, and medical therapy. On the other hand, the new technologies have stimulated elaborate theo retical investigations, especially in developing QED theory, relativistic many body techniques, plasma-kinetic modeling based on the Coulomb interactions of highly charged ions with photons and various atomic particles - electrons, atoms, molecules and ions. The idea of assembling this book matured while the editors were writ ing another book, X-Ray Radiation of Highly Charged Ions by H. F. Beyer, H. -J. Kluge and V. P. Shevelko (Springer, Berlin, Heidelberg 1997) covering a broad range of x-ray and other radiative phenomena central to atomic physics with heavy ions."
This volume reviews the most recent progress on new exact solutions of the Yang-Mills SU(2) gauge field equations. In order to have a better understanding of the physical meaning of the Yang-Mills fields, the motion of a particle in these fields, first in general and then, in particular fields were discussed.
A state of the art description of organic photo- and electroactive molecules and their practical applications. Topics covered include molecular design and synthesis of highly light sensitive molecules and phenomena associated with electron-photon interaction in organic molecules: nonlinear beam propagation, photorefractivity, multiphoton excitations and absorption, charge photogeneration and mobility, photo- and electroluminescence, photochromism and electrochromism, organic synthesis, material engineering and processing. Applications are addresses: optical data storage, LEDs, optical signalling processing, optical power limiters.
This book provides an exhaustive account of the origin and dynamics of cosmic rays. Divided into three parts, it first gives an up-to-date summary of the observational data, then -- in the following theory section -- deals with the kinetic description of cosmic ray plasma. The underlying diffusion-convection transport equation, which governs the coupling between cosmic rays and the background plasma, is derived and analyzed in detail. In the third part, several applications of the solutions of the transport equation are presented and how key observations in cosmic ray physics can be accounted for is demonstrated. The applications include cosmic ray modulation, acceleration near shock waves and the galactic propagation of cosmic rays. While the book is primarily of interest to scientists working at the forefront of research, the very careful derivations and explanations make it suitable also as an introduction to the field of cosmic rays for graduate students.
This book lays the foundations for you to understand all that you always wanted to know about radioactivity. It begins by setting out essential information about the structure of matter, how radiation occurs and how it can be measured. It goes on to explore the substantial benefits of radioactivity through its many applications, and also the possible risks associated with its use. The field of radioactivity is explained in layman's terms, so that everybody who is interested can improve their understanding of issues such as nuclear power, radiation accidents, medical applications of radiation and radioactivity from the environment. Everything is radioactive. There is natural radioactivity in the homes that we live in, the food that we eat and the air that we breath. For over 100 years, people have recognised the potential for radioactivity to help solve problems and improve our standard of living. This has led to the creation of radioactivity levels in some places that are much higher than naturally-occurring background levels. Such high levels of radiation can be harmful to people and the environment, so there is a clear need to manage this potential harm and to make the risk worth the benefits mankind can achieve from radioactive materials.
This book mainly focuses on the experimental research of rf breakdown and field emission with novel methods, including triggering rf breakdown with high intensity laser and pin-shaped cathodes as well as locating field emitters with a high resolution in-situ imaging system. With these methods, this book has analyzed the power flow between cells during rf breakdown, observed the evolution of field emission during rf conditioning and the dependence of field emission on stored energy, and studied the field emitter distribution and origination. The research findings greatly expand the understanding of rf breakdown and field emission, which will in turn benefit future study into electron sources, particle accelerators, and high gradient rf devices in general.
This thesis presents the measurement of the Higgs boson cross section in the diphoton decay channel. The measurement relies on proton-proton collision data at a center-of-mass energy s = 13 TeV recorded by the ATLAS experiment at the Large Hadron Collider (LHC). The collected data correspond to the full Run-2 dataset with an integrated luminosity of 139 fb-1. The measured cross sections are used to constrain anomalous Higgs boson interactions in the Effective Field Theory (EFT) framework. The results presented in this thesis represent a reduction by a factor 2 of the different photon and jet energy scale and resolution systematic uncertainties with respect to the previous ATLAS publication. The thesis details the calibration of electron and photon energies in ATLAS, in particular the measurement of the presampler energy scale and the estimation of its systematic uncertainty. This calibration was used to perform a measurement of the Higgs boson mass in the H and H 4l channels using the 36 fb 1 dataset.
Electromagnetic Meson Production at Low Energies; B.H. Schoch. Parity Violation in Electron Scattering; R.D. McKeown. Polarization in Leptoninduced Reactions; T.W. Donnelly. Quark Structure of the Nucleon and Nucleon Resonances; B. Metsch. Leptonic Production of Baryon Resonances; V.D. Burkert. Structure Functions of the Nucleon; T.J. Ketel. Nuclear Filtering and Quantum Color Transparency: An Introductory Review; J.P. Ralston. Photon and Meson Production in Ultrarelativistic Nucleus-Nucleus Collisions; H. Loehner. Near Threshold Particle Production: A Probe of Resonancematter Formation in Heavy-ion Collisions; V. Metag. Quark Matter and Nuclear Collisions; H. Satz. The String Model of Nuclear Scattering: Theoretical Concepts; K. Werner. Introduction to the Dual Parton Model; A. Capella. Nucleon-Nucleon Bremsstrahlung; K. Nakayama. Index.
Ever since its invention in 1929 the Dirac equation has played a fundamental role in various areas of modern physics and mathematics. Its applications are so widespread that a description of all aspects cannot be done with sufficient depth within a single volume. In this book the emphasis is on the role of the Dirac equation in the relativistic quantum mechanics of spin-1/2 particles. We cover the range from the description of a single free particle to the external field problem in quantum electrodynamics. Relativistic quantum mechanics is the historical origin of the Dirac equation and has become a fixed part of the education of theoretical physicists. There are some famous textbooks covering this area. Since the appearance of these standard texts many books (both physical and mathematical) on the non relativistic Schrodinger equation have been published, but only very few on the Dirac equation. I wrote this book because I felt that a modern, comprehensive presentation of Dirac's electron theory satisfying some basic requirements of mathematical rigor was still missing."
This thesis focuses on a cutting-edge area of research, which is aligned with CERN's mainstream research, the "AWAKE" project, dedicated to proving the capability of accelerating particles to the energy frontier by the high energy proton beam. The author participated in this project and has advanced the plasma wakefield theory and modelling significantly, especially concerning future plasma acceleration based collider design. The thesis addresses electron beam acceleration to high energy whilst preserving its high quality driven by a single short proton bunch in hollow plasma. It also demonstrates stable deceleration of multiple proton bunches in a nonlinear regime with strong resonant wakefield excitation in hollow plasma, and generation of high energy and high quality electron or positron bunches. Further work includes the assessment of transverse instabilities induced by misaligned beams in hollow plasma and enhancement of the wakefield amplitude driven by a self-modulated long proton bunch with a tapered plasma. This work has major potential to impact the next generation of linear colliders and also in the long-term may help develop compact accelerators for use in industrial and medical facilities. |
![]() ![]() You may like...
Advances in Microbial Physiology, Volume…
Robert K. Poole, David J. Kelly
Hardcover
The Liferaft Survival Guide - How to…
Michael Howorth, Frances Howorth
Paperback
R472
Discovery Miles 4 720
Pattern Recognition Applications in…
Diego Alexander Tibaduiza Burgos, Maribel Anaya Vejar, …
Hardcover
R6,464
Discovery Miles 64 640
Computational Methods and Clinical…
Jianhua Yao, Tobias Klinder, …
Hardcover
|