![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Particle & high-energy physics
The top quark is by far the heaviest known fundamental particle with a mass nearing that of a gold atom. Because of this strikingly high mass, the top quark has several unique properties and might play an important role in electroweak symmetry breaking-the mechanism that gives all elementary particles mass. Creating top quarks requires access to very high energy collisions, and at present only the Tevatron collider at Fermilab is capable of reaching these energies. Until now, top quarks have only been observed produced in pairs via the strong interaction. At hadron colliders, it should also be possible to produce single top quarks via the electroweak interaction. Studies of single top quark production provide opportunities to measure the top quark spin, how top quarks mix with other quarks, and to look for new physics beyond the standard model. Because of these interesting properties, scientists have been looking for single top quarks for more than 15 years. This thesis presents the first discovery of single top quark production. It documents one of the flagship measurements of the D0 experiment, a collaboration of more than 600 physicists from around the world. It describes first observation of a physical process known as "single top quark production," which had been sought for more than 10 years before its eventual discovery in 2009. Further, his thesis describes, in detail, the innovative approach Dr. Gillberg took to this analysis. Through the use of Boosted Decision Trees, a machine-learning technique, he observed the tiny single top signal within an otherwise overwhelming background. This Doctoral Thesis has been accepted by Simon Fraser University, Burnaby, BC, Canada."
This book, like the first and second editions, addresses the fundamental principles of interaction between radiation and matter and the principles of particle detection and detectors in a wide scope of fields, from low to high energy, including space physics and medical environment. It provides abundant information about the processes of electromagnetic and hadronic energy deposition in matter, detecting systems, performance of detectors and their optimization.The third edition includes additional material covering, for instance: mechanisms of energy loss like the inverse Compton scattering, corrections due to the Landau-Pomeranchuk-Migdal effect, an extended relativistic treatment of nucleus-nucleus screened Coulomb scattering, and transport of charged particles inside the heliosphere. Furthermore, the displacement damage (NIEL) in semiconductors has been revisited to account for recent experimental data and more comprehensive comparisons with results previously obtained.This book will be of great use to graduate students and final-year undergraduates as a reference and supplement for courses in particle, astroparticle, space physics and instrumentation. A part of the book is directed toward courses in medical physics. The book can also be used by researchers in experimental particle physics at low, medium, and high energy who are dealing with instrumentation.
The International Linear Collider (ILC) is a mega-scale, technically complex project, requiring large financial resources and cooperation of thousands of scientists and engineers from all over the world. Such a big and expensive project has to be discussed publicly, and the planned goals have to be clearly formulated. This book advocates for the demand for the project, motivated by the current situation in particle physics. The natural and most powerful way of obtaining new knowledge in particle physics is to build a new collider with a larger energy. In this approach, the Large Hadron Collider (LHC) was created and is now operating at the world record center of-mass energy of 13 TeV. Although the design of colliders with a larger energy of 50-100 TeV has been discussed, the practical realization of such a project is not possible for another 20-30 years. Of course, many new results are expected from LHC over the next decade. However, we must also think about other opportunities, and in particular, about the construction of more dedicated experiments. There are many potentially promising projects, however, the most obvious possibility to achieve significant progress in particle physics in the near future is the construction of a linear e+e- collider with energies in the range (250-1000) GeV. Such a project, the ILC, is proposed to be built in Kitakami, Japan. This book will discuss why this project is important and which new discoveries can be expected with this collider.
This thesis describes the experimental work that finally led to a successful measurement of coherent elastic neutrino-nucleus scattering-a process proposed forty-three years ago. The experiment was performed at the Spallation Neutron Source facility, sited at Oak Ridge National Laboratory, in Tennessee. Of all known particles, neutrinos distinguish themselves for being the hardest to detect, typically requiring large multi-ton devices for the job. The process measured here involves the difficult detection of very weak signals arising from nuclear recoils (tiny neutrino-induced "kicks" to atomic nuclei), but leads to a much larger probability of neutrino interaction when compared to all other known mechanisms. As a result of this, "neutrino technologies" using miniaturized detectors (the author's was handheld and weighed only 14 kg) become a possibility. A large community of researchers plans to continue studying this process, facilitating an exploration of fundamental neutrino properties that is presently beyond the sensitivity of other methods.
The second edition deals with all essential aspects of non-relativistic quantum physics up to the quantisation of fields. In contrast to common textbooks of quantum mechanics, modern experiments are described both for the purpose of foundation of the theory and in relation to recent applications. Links are made to important research fields and applications such as elementary particle physics, solid state physics and nuclear magnetic resonance in medicine, biology and material science. Special emphasis is paid to quantum physics in nanoelectronics such as resonant tunnelling, Coulomb blockade and the realisation of quantum bits. This second edition also considers quantum transport through quantum point contacts and its application as charge detectors in nanoelectronic circuits. Also the realization and the study of electronic properties of an artificial quantum dot molecule are presented. Because of its recent interest a brief discussion of Bose-Einstein condensation has been included, as well as the recently detected Higgs particle. Another essential new addition to the present book concerns a detailed discussion of the particle picture in quantum field theory. Counterintuitive aspects of single particle quantum physics such as particle-wave duality and the Einstein-Podolski-Rosen (EPR) paradox appear more acceptable to our understanding if discussed on the background of quantum field theory. The non-locality of quantum fields explains non-local behaviour of particles in classical Schroedinger quantum mechanics. Finally, new problems have been added. The book is suitable as an introduction into quantum physics, not only for physicists but also for chemists, biologists, engineers, computer scientists and even for philosophers as far as they are interested in natural philosophy and epistemology.
In 2010, the ALPHA collaboration achieved a first for mankind: the stable, long-term storage of atomic antimatter, a project carried out a the Antiproton Decelerator facility at CERN. A crucial element of this observation was a dedicated silicon vertexing detector used to identify and analyze antihydrogen annihilations. This thesis reports the methods used to reconstruct the annihilation location. Specifically, the methods used to identify and extrapolate charged particle tracks and estimate the originating annihilation location are outlined. Finally, the experimental results demonstrating the first-ever magnetic confinement of antihydrogen atoms are presented. These results rely heavily on the silicon detector, and as such, the role of the annihilation vertex reconstruction is emphasized.
Synchrotron radiation sources are now used routinely by thousands of research scientists and engineers throughout the world to perform experiments in biology, physics, materials science, chemistry and so on. The very best of these sources are based upon the use of undulator and wiggler insertion devices that can enhance the intensity of the radiation by many orders of magnitude. This book, which is part of the Oxford Series on Synchrotron Radiation, brings together both a detailed step by step description of the radiation properties from these devices as well as an explanation of the practical realization of actual devices using available magnet technologies. The book is aimed at not just the users but also the providers of synchrotron radiation. It takes the reader through the fundamental issues, and provides sufficient depth so as to be an indispensable reference to light source designers, accelerator physicists and insertion device specialists. The approach taken is to provide the reader with all of the essential information and to back this up with practical examples and illustrations wherever possible.
This book describes the interaction of living matter with photons, neutrons, charged particles, electrons and ions. The authors are specialists in the field of radiation protection. The book synthesizes many years of experiments with external radiation exposure in the fields of dosimetry and radiation shielding in medical, industrial and research fields. It presents the basic physical concepts including dosimetry and offers a number of tools to be used by students, engineers and technicians to assess the radiological risk and the means to avoid them by calculating the appropriate shields. The theory of radiation interaction in matter is presented together with empirical formulas and abacus. Numerous numerical applications are treated to illustrate the different topics. The state of the art in radiation protection and dosimetry is presented in detail, especially in the field of simulation codes for external exposure to radiation, medical projects and advanced research. Moreover, important data spread in different up to date references are presented in this book. The book deals also with accelerators, X-rays facilities, sealed sources, dosimetry, Monte Carlo simulation and radiation regulation. Each chapter is split in two parts depending on the level of details the readers want to focus on. The first part, accessible to a large public, provides a lot of simple examples to help understanding the physics concepts under radiation external exposure. The second part, called "Additional Information" is not mandatory; it aims on explaining topics more deeply, often using mathematical formulations. The book treats fundamental radiometric and dosimetric quantities to describe the interaction in materials under the aspects of absorbed dose processes in tissues. Definitions and applications on limited and operational radiation protection quantities are given. An important aspect are practical engineering tools in industrial, medical and research domains. Source characterization and shielding design are addressed. Also more "exotic" topics, such as ultra intense laser and new generation accelerators, are treated. The state of the art is presented to help the reader to work with the book in a self-consistent way. The basic knowledge necessary to apply Monte Carlo methods in the field of radiation protection and dosimetry for external radiation exposure is provided. Coverage of topics such as variance reduction, pseudo-random number generation and statistic estimators make the book useful even to experienced Monte Carlo practitioners. Solved problems help the reader to understand the Monte Carlo process. The book is meant to be used by researchers, engineers and medical physicist. It is also valuable to technicians and students.
This book describes research in two different areas of state-of-the-art hadron collider physics, both of which are of central importance in the field of particle physics. The first part of the book focuses on the search for supersymmetric particles called gluinos. The book subsequently presents a set of precision measurements of "multi-jet" collision events, which involve large numbers of newly created particles, and are among the dominant processes at the Large Hadron Collider (LHC). Now that a Higgs boson has been discovered at the LHC, the existence (or non-existence) of supersymmetric particles is of the utmost interest and significance, both theoretically and experimentally. In addition, multi-jet collision events are an important background process for a wide range of analyses, including searches for supersymmetry.
This book presents a major step forward in experimentally understanding the behavior of muon neutrinos and antineutrinos. Apart from providing the world's first measurement of these interactions in a mostly unexplored energy region, the data presented advances the neutrino community's preparedness to search for an asymmetry between matter and anti-matter that may very well provide the physical mechanism for the existence of our universe. The details of these measurements are preceded by brief summaries of the history of the neutrino, the phenomenon of neutrino oscillations, and a description of their interactions. Also provided are details of the experimental setup for the measurements and the muon antineutrino cross-section measurement which motivates the need for dedicated in situ background constraints. The world's first measurement of the neutrino component of an antineutrino beam using a non-magnetized detector, as well as other crucial background constraints, are also presented in the book. By exploiting correlated systematic uncertainties, combined measurements of the muon neutrino and antineutrino cross sections described in the book maximize the precision of the extracted information from both results.
This exhaustive survey is the result of a four year effort by many leading researchers in the field to produce both a readable introduction and a yardstick for the many upcoming experiments using heavy ion collisions to examine the properties of nuclear matter. The books falls naturally into five large parts, first examining the bulk properties of strongly interacting matter, including its equation of state and phase structure. Part II discusses elementary hadronic excitations of nuclear matter, Part III addresses the concepts and models regarding the space-time dynamics of nuclear collision experiments, Part IV collects the observables from past and current high-energy heavy-ion facilities in the context of the theoretical predictions specific to compressed baryonic matter. Part V finally gives a brief description of the experimental concepts. The book explicitly addresses everyone working or planning to enter the field of high-energy nuclear physics.
This invaluable book provides a quick introduction to the rudiments of perturbative string theory and a detailed introduction to the more current topic of D-brane dynamics. The presentation is very pedagogical, with much of the technical detail streamlined. The rapid but highly coherent introduction to the subject is perhaps what distinguishes this book from other string theory or D-brane books. This second edition includes an additional appendix with solutions to the exercises, thus expanding on some of the technical material and making the book more appealing for use in lecture courses. The material is based on mini-courses delivered by the author at various summer schools in theoretical high energy physics, so its actual level has been appropriately tested.
Advances in the synthesis of new materials with often complex, nano-scaled structures require increasingly sophisticated experimental techniques that can probe the electronic states, the atomic magnetic moments and the magnetic microstructures responsible for the properties of these materials. At the same time, progress in synchrotron radiation techniques has ensured that these light sources remain a key tool of investigation, e.g. synchrotron radiation sources of the third generation are able to support magnetic imaging on a sub-micrometer scale. With the Fifth Mittelwihr School on Magnetism and Synchrotron Radiation the tradition of teaching the state-of-the-art on modern research developments continues and is expressed through the present set of extensive lectures provided in this volume. While primarily aimed at postgraduate students and newcomers to the field, this volume will also benefit researchers and lecturers actively working in the field.
The Conference on Quantum Mechanics, Elementary Particles, Quantum Cosmology and Complexity was held in honour of Professor Murray Gell-Mann's 80th birthday in Singapore on 24-26 February 2010. The conference paid tribute to Professor Gell-Mann's great achievements in the elementary particle physics.This notable birthday volume contains the presentations made at the conference by many eminent scientists, including Nobel laureates C N Yang, G 't Hooft and K Wilson. Other invited speakers include G Zweig, N Samios, M Karliner, G Karl, M Shifman, J Ellis, S Adler and A Zichichi.About Murray Gell-MannMurray Gell-Mann, born September 15, 1929, won the 1969 Nobel Prize in physics for his work on the theory of elementary particles.His contributions span the entire history of particle physics, from the early days of the particle zoo to the modern day QCD. Along the way, even as he proposed new quantum numbers to bring order into the zoo, he had fun in naming them. And thus was born Strangeness, Flavor, Hadrons, Baryons, Leptons, the Eightfold Way, Color, Quarks, Gluons and, with Harald Fritzsch, the standard field theory of strong interactions, Quantum Chromodynamics (QCD).He also proposed with Richard Feynman the V-A theory of beta decay. Gell-Mann discovered the Current Algebra, proposed (with Levy) the sigma model of pions and the see-saw mechanism for the neutrino masses.
Proceedings of the 4th Joint International Conference on Hyperfine Interactions and International Symposium on Nuclear Quadrupole Interactions, HFI/NQI 2012 held in Beijing, China, September 10-14, 2012. The hyperfine interaction between the atomic nucleus and the surrounding charge distribution and the magnetic fields at the site of the nucleus remains a topic of high scientific interest. To this we have to add the field of nuclear quantum optics where the hyperfine interaction takes place between the atomic nucleus and synchrotron radiation. The study of this hyperfine interaction allows to shift the existing borders of scientific insight both in the properties of the atomic nucleus as in the properties of the solids and liquids in which it is imbedded. The 47 scientific contributions in this book describe studies presented at the HFI/NQI2012 conference. These studies are devoted to topics such as nuclear moments, nuclear polarization, fundamental interactions, magnetism and magnetic materials, semiconductors, metals, insulators, practical applications, developments in methodology and new directions in the field of hyperfine interactions.
Neutrinos continue to be the most mysterious and, arguably, the most fascinating particles of the Standard Model as their intrinsic properties such as absolute mass scale and CP properties are unknown. The open question of the absolute neutrino mass scale will be addressed with unprecedented accuracy by the Karlsruhe Tritium Neutrino (KATRIN) experiment, currently under construction. This thesis focusses on the spectrometer part of KATRIN and background processes therein. Various background sources such as small Penning traps, as well as nuclear decays from single radon atoms are fully characterized here for the first time. Most importantly, however, it was possible to reduce the background in the spectrometer by more than five orders of magnitude by eliminating Penning traps and by developing a completely new background reduction method by stochastically heating trapped electrons using electron cyclotron resonance (ECR). The work beautifully demonstrates that the obstacles and challenges in measuring the absolute mass scale of neutrinos can be met successfully if novel experimental tools (ECR) and novel computing methods (KASSIOPEIA) are combined to allow almost background-free tritium ss-spectroscopy.
This volume comprises the recent development in the theoretical and
experimental progress dedicated to trapped charged particles and
related fundamental physics and applications. The content has been
divided topic-wise covering basic questions of Fundamental Physics,
Quantum and QED Effects, Plasmas and Collective Behavior and
Anti-Hydrogen. More technical issues include Storage Ring Physics,
Precision Spectroscopy and Frequency Standards, Highly Charged Ions
in Traps, Traps for Radioactive Isotopes and New Techniques and
Facilities. An applied aspect of ion trapping is discussed in
section devoted to Applications of Particle Trapping including
Quantum Information, Chemistry and Trace Analysis. Each topic has a
more general introduction, but also more detailed contributions are
included. A selection of contributions exemplifies the
interdisciplinary nature of the research on trapped charged
particles worldwide.
This dissertation focuses on the study of novel high-gain free-electron laser (FEL) operation schemes with external seed lasers. The technique of manipulating the phase space of the electron beam, which is widely used in novel seeded FEL schemes, is systematically studied. Several novel FEL schemes are proposed for the generation of intense coherent FEL pulses with short wavelength, sub-femtosecond pulse length or multiple carrier frequency properties, which meet the needs of FEL users. Results of experiments are described for the recently proposed FEL schemes such as echo-enabled harmonic generation and cascaded high-gain harmonic generation. New photon/electron beam diagnostic methods are also developed for these experiments and future high-gain FEL facilities.
This book provides a concise survey of modern theoretical concepts of X-ray materials analysis. The principle features of the book are: basics of X-ray scattering, interaction between X-rays and matter and new theoretical concepts of X-ray scattering. The various X-ray techniques are considered in detail: high-resolution X-ray diffraction, X-ray reflectivity, grazing-incidence small-angle X-ray scattering and X-ray residual stress analysis. All the theoretical methods presented use the unified physical approach. This makes the book especially useful for readers learning and performing data analysis with different techniques. The theory is applicable to studies of bulk materials of all kinds, including single crystals and polycrystals as well as to surface studies under grazing incidence. The book appeals to researchers and graduate students alike.
Special relativity is the basis of many fields in modern physics: particle physics, quantum field theory, high-energy astrophysics, etc. This theory is presented here by adopting a four-dimensional point of view from the start. An outstanding feature of the book is that it doesn't restrict itself to inertial frames but considers accelerated and rotating observers. It is thus possible to treat physical effects such as the Thomas precession or the Sagnac effect in a simple yet precise manner. In the final chapters, more advanced topics like tensorial fields in spacetime, exterior calculus and relativistic hydrodynamics are addressed. In the last, brief chapter the author gives a preview of gravity and shows where it becomes incompatible with Minkowsky spacetime. Well illustrated and enriched by many historical notes, this book also presents many applications of special relativity, ranging from particle physics (accelerators, particle collisions, quark-gluon plasma) to astrophysics (relativistic jets, active galactic nuclei), and including practical applications (Sagnac gyrometers, synchrotron radiation, GPS). In addition, the book provides some mathematical developments, such as the detailed analysis of the Lorentz group and its Lie algebra. The book is suitable for students in the third year of a physics degree or on a masters course, as well as researchers and any reader interested in relativity. Thanks to the geometric approach adopted, this book should also be beneficial for the study of general relativity. "A modern presentation of special relativity must put forward its essential structures, before illustrating them using concrete applications to specific dynamical problems. Such is the challenge (so successfully met!) of the beautiful book by Eric Gourgoulhon." (excerpt from the Foreword by Thibault Damour)
The production of heavy quarks in high-energy experiments offers a rich field to study, both experimentally and theoretically. Due to the additional quark mass, the description of these processes in the framework of perturbative QCD is much more demanding than it is for those involving only massless partons. In the last two decades, a large amount of precision data has been collected by the deep inelastic HERA experiment. In order to make full use of these data, a more precise theoretical description of charm quark production in deep inelastic scattering is needed. This work deals with the first calculation of fixed moments of the NNLO heavy flavor corrections to the proton structure function F2 in the limit of a small charm-quark mass. The correct treatment of these terms will allow not only a more precise analysis of the HERA data, but starting from there also a more precise determination of the parton distribution functions and the strong coupling constant, which is an essential input for LHC physics. The complexity of this calculation requires the application and development of technical and mathematical methods, which are also explained here in detail.
Supersymmetry is a symmetry which combines bosons and fermions in the same multiplet of a larger group which unites the transformations of this symmetry with that of spacetime. Thus every bosonic particle must have a fermionic partner and vice versa. Since this is not what is observed, this symmetry with inherent theoretical advantages must be badly broken. It is hoped that the envisaged collider experiments at CERN will permit a first experimental test, which is expected to revive the interest in supersymmetry considerably.This revised edition of the highly successful text of 20 years ago provides an introduction to supersymmetry, and thus begins with a substantial chapter on spacetime symmetries and spinors. Following this, graded algebras are introduced, and thereafter the supersymmetric extension of the spacetime Poincare algebra and its representations. The Wess-Zumino model, superfields, supersymmetric Lagrangians, and supersymmetric gauge theories are treated in detail in subsequent chapters. Finally the breaking of supersymmetry is addressed meticulously. All calculations are presented in detail so that the reader can follow every step.
This thesis establishes an exciting new beginning for Laser Plasma Accelerators (LPAs) to further develop toward the next generation of compact high energy accelerators. Design, installation and commissioning of a new experimental setup at LBNL played an important role and are detailed through three critical components: e-beam production, reflection of laser pulses with a plasma mirror and large wake excitation below electron injection threshold. Pulses from a 40 TW peak power laser system were split into a 25 TW pulse and a 15 TW pulse. The first pulse was used for e-beam production in the first module and the second pulse was used for wake excitation in the second module to post-accelerate the e-beam. As a result, reliable e-beam production and efficient wake excitation necessary for the staged acceleration were independently demonstrated. These experiments have laid the foundation for future staging experiments at the 40 TW peak power level.
Volume III/48A continues the compilation of nuclear quadrupole resonance spectroscopy (NQRS) data of solid substances, covering the literarure from 1995 to the end of 2006. It provides 1270 NQRS data sets (measurement method, nucleus, temperature, quadrupole coupling constant, asymmetry parameter, resonance frequeny, remarks, references) for substances with Hill formulae ranging from Ag to C10H15. Included are the data for substances studied for the first time, as well as data for substances already present in previous volumes if the data published there could be completed or improved by the new studies.
The publication of the first edition of "Introduction to Supersymmetry and Supergravity" was a remarkable success. This second edition contains a substantial amount of new material especially on two-dimensional supersymmetry algebras, their irreducible representations as well as rigid and local (i.e. supergravity) theories of 2-dimensional supersymmetry both in x-space and superspace. These theories include the actions for the superstring and the heterotic string. In addition, a chapter is devoted to a discussion on superconformal algebras in two dimensions and contains an account of super operator product expansion. |
![]() ![]() You may like...
Memorial Volume For Jack Steinberger…
Julia Steinberger, Weimin Wu, …
Hardcover
R2,352
Discovery Miles 23 520
Frank Wilczek: 50 Years Of Theoretical…
Antti Niemi, Alfred Shapere, …
Hardcover
R1,933
Discovery Miles 19 330
Particles, Fields And Topology…
T R Govindarajan, Giuseppe Marmo, …
Hardcover
R3,130
Discovery Miles 31 300
|