![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Particle & high-energy physics
This book reports on a new result from the KL 0 search at the J-PARC KOTO experiment, which sets an upper limit of 3x10-9 for the branching fraction of the decay at the 90% confidence level, improving the previous best limit by an order of magnitude. To explain the matter-antimatter asymmetry in the universe, still unknown new physics beyond the standard model (SM) that breaks CP symmetry is necessary. The rare decay of a long-lived neutral K meson, KL 0 , is a CP-violating decay. It is an excellent probe to search for new physics because new physics can contribute to the decay and change its branching fraction, while the SM is as small as 3x10-11. However, it is extremely difficult to search for because all of the decay products are neutral and two neutrinos are undetectable. The KL 0 signal is identified by measuring two photons from a 0 with a calorimeter and confirming the absence of any other detectable particles with hermetic veto counters. The book contributes to the analysis of neutron-induced backgrounds which were the dominant background sources in the search. For the background caused by two consecutive hadronic showers in the calorimeter due to a neutron, the author evaluated the background yield using a data-driven approach. For another background caused by an meson production- decays two photons-by a neutron that hits a veto counter near the calorimeter, the author developed an original analysis technique to reduce it. The book also contributes to the analysis of the normalization modes (KL 3 0, KL 2 0, KL 2 ) to measure KL yield, the estimation of the signal acceptance based on a simulation, and the evaluation of the trigger efficiency. As a result, significant improvements in the measurement were achieved, and this is an important step in the continuing higher sensitivity search, which can reach new physics with the energy scales up to O(100-1000 TeV).
The research presented here includes important contributions on the commissioning of the ATLAS experiment and the discovery of the Higgs boson. The thesis describes essential work on the alignment of the inner tracker during the commissioning of the experiment and development of the electron identification algorithm. The subsequent analysis focuses on the search for the Higgs boson in the WW channel, including the development of a method to model the critical W+jet background. In addition, the thesis provides excellent introductions, suitable for non-specialists, to Higgs physics, to the LHC, and to the ATLAS experiment.
The great advantage of coincidence measurements is that by suitable choice of the kinematical and geometrical arrangement one may probe delicate physical effects which would be swamped in less differential experiments. The measurement of the triple dif ferential and higher-order cross sections presents enormous technical difficulties, but refined experiments of this type provide an insight into the subtleties of the scattering process and offer a welcome, if severe, test of the available theoretical models. The last few years have been an exciting time to work in the field and much has been learned. Profound insights have been gleaned into the basic Coulomb few body problem in atomic physics: the experimental study of the fundamental (e,2e) processes on hydrogen and helium targets continues to add to our knowledge and indeed to challenge the best of our theoretical models; significant advances have been made in the understanding of the "double excitation problem," that is the study of ionization processes with two active target electrons: important measurements of (e,3e), (, ), 2e), excitation-ionization and excitation autoionization have been reported and strides have been made in their theoretical description; the longstanding discrepancies between theory and experiment for relativistic (e,2e) processes were resolved, spin dependent effects predicted and ob served and the first successful coincidence experiments on surfaces and thin films were announced. Theory and experiment have advanced in close consort. The papers pre sented here cover the whole gambit of research in the field. Much has been achieved but much remains to be done."
This book offers a concise presentation of theoretical concepts characterizing and quantifying the slowing down of swift heavy ions in matter. Although the penetration of charged particles through matter has been studied for almost a hundred years, the quantitative theory for swift penetrating ions heavier than helium has been developed mainly during the past decade and is still progressing rapidly. The book addresses scientists and engineers working at accelerators with an interest in materials analysis and modification, medical diagnostics and therapy, mass spectrometry and radiation damage, as well as atomic and nuclear physicists. Although not a textbook, this monograph represents a unique source of state-of-the-art information that is useful to a university teacher in any course involving the interaction of charged particles with matter.
UNDER THE SPELL OF THE GAUGE PRINCIPLE - by G 't HooftThe University of Bologna and its Academy of Sciences, in collaboration with the Italian National Institute for Nuclear Physics and the Italian Physical Society, celebrated in 1998 the bicentenary of a great pioneer in the field of electric phenomena - Luigi Galvani, the father of macroelectricity. During these two centuries, the physics of electric phenomena has given rise first to the Maxwell equations, then to quantum electrodynamics, and finally to the synthesis of all reproducible phenomena, the "Standard Model". A cornerstone of the Standard Model is quantum chromodynamics (QCD), which describes the interaction between quarks and gluons in the innermost part of the structure of matter.The discovery of QCD will be recalled in the future as one of the greatest achievements of mankind. Many physicists, the world over, have contributed to its creation on both the experimental and the theoretical front. Professor Antonino Zichichi has played an important role in this scientific venture, as documented by his works which are reproduced in this invaluable volume.One of the founders of European physics, Professor Victor F Weisskopf, contributes with his memories of the time when QCD had many problems. This volume owes its existence to a founding father of QCD, Professor Vladimir N Gribov, whose sudden demise prevented him from directly contributing to its final edition. Two world leaders in subnuclear theoretical physics, Professors Gerardus 't Hooft and Gabriele Veneziano, illustrate the significance of the contributions of Antonino Zichichi in QCD.
This book offers a first-hand introduction to the Lanzhou Heavy Ion Research Facility. Taking readers on a fascinating journey through the magical nuclear world, it shapes the abstract nucleus into an intuitive and pleasing image of a "dwarf". It also presents the facility's achievements and its impact on economic and social development, especially in the context of research on cancer treatment. Providing advanced scientific and technological insights, the book includes a large number of images and videos to help readers better understand abstract concepts such as heavy ions and ion accelerators. The book is intended for the general readers who are interested in the field of modern physics.
The original work presented in this thesis constitutes an important contribution to modern Cosmic Ray (CR) physics, and comes during one of the most exciting periods of this field. The first part introduces a new numerical code (DRAGON) to model the CR propagation in our Galaxy. The code is then used to perform a combined analysis of CR data, making it possible to determine their propagation properties with unprecedented accuracy. The second part is dedicated to a theoretical interpretation of the recent crucial experimental results on cosmic electron and positron spectra (PAMELA, Fermi-LAT experiments). Using the tools developed in the first part of the thesis, the author convincingly argues for the existence of a new spectral component, which could arise either from local astrophysical sources, such as pulsars, or from Dark Matter annihilation or decay. This thesis is a highly advanced work; the methods, analysis and results are clearly and carefully presented. This work is set to become an important reference document for any future work in this area.
This book reviews recent contributions of electron positron colliders to the precision test of the electroweak Standard Model. It includes a short summary of the measurements at the Z resonance and gives an overview of the electroweak processes above the Z. Subsequently, measurements of the W mass at LEP are discussed in detail. Late chapters offer an outlook on electroweak physics at the future LHC. Also features many illustrations and tables.
This book emphasizes the role that electron interactions play in the properties of condensed matter. It teaches the use of the powerful nonperturbative techniques that have become available in the last decades to discuss such topics as mixed valence systems, Kondo systems, heavy electrons, high-temperature copper oxide superconductors, the quantum Hall effect, and low-dimensional isotropic magnets. Mathematical derivations are self contained. Appendices provide standard many-body tools including second quantization, Grassmann variables, generating functionals, linear response, correlation functions, Fermi and Bose coherent-states path integrals, Matsubara representation, and the method of steepest descents. There are guided bibliographies and exercises at the end of each chapter.
In this thesis the author discusses the phenomenology of supersymmetric models by means of experimental data set analysis of the electric dipole moment. There is an evaluation of the elementary processes contributing to the electric dipole moments within R-parity-violating supersymmetry, which call for higher-order perturbative computations. A new method based on linear programming is developed and for
the first time the non-trivial parameter space of R-parity
violation respecting the constraints from existing experimental
data of the electric dipole moment is revealed. As well, the
impressive efficiency of the new method in scanning the parameter
space of the R-parity-violating sector is effectively demonstrated.
This new method makes it possible to extract from the experimental
data a more reliable constraint on the R-parity violation.
In this thesis the author contributes to the analysis of neutrino beam data collected between 2010 and 2013 to identify e events at the Super-Kamiokande detector. In particular, the author improves the pion-nucleus interaction uncertainty, which is one of the dominant systematic error sources in T2K neutrino oscillation measurement. In the thesis, the measurement of e oscillation in the T2K (Tokai to Kamioka) experiment is presented and a new constraint on CP is obtained. This measurement and the analysis establish, at greater than 5 significance, the observation of e oscillation for the first time in the world. Combining the T2K e oscillation measurement with the latest findings on oscillation parameters including the world average value of 13 from reactor experiments, the constraint on the value of CP at the 90% confidence level is obtained. This constraint on CP is an important step towards the discovery of CP violation in the lepton sector.
This thesis presents two production cross-section measurements of pairs of massive bosons using final states with leptons, made with the ATLAS detector at the Large Hadron Collider. The first measurement, performed using data collected in 2012 at center-of-mass energy s = 8 TeV, is the first fiducial and differential cross-section measurement of the production of the Higgs Boson when it decays to four charged leptons (electrons or muons). The second measurement is the first fiducial and inclusive production cross-section measurement of WZ pairs at center-of-mass energy s = 13 TeV using final states with three charged leptons. A significant portion of the thesis focuses on the methods used to identify electrons from massive boson decay-important for many flagship measurements-and on assessing the efficiency of these particle identification techniques. The chapter discussing the WZ pair cross-section measurement provides a detailed example of an estimate of lepton background in the context of an analysis with three leptons in the final state.
This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied by creation of e-e+ pairs, and the photoionization of endohedral atoms (e.g. fullerene). Last but not least, the computationally challenging transitions in the electron shell during certain types of nuclear decays are investigated in detail.
This book explores the relaxation dynamics of inner-valence-ionized diatomic molecules on the basis of extreme-ultraviolet pump-probe experiments performed at the free-electron laser (FEL) in Hamburg. Firstly, the electron rearrangement dynamics in dissociating multiply charged iodine molecules is studied in an experiment that made it possible to access charge transfer in a thus far unexplored quasimolecular regime relevant for plasma and chemistry applications of the FEL. Secondly the lifetime of an efficient non-radiative relaxation process that occurs in weakly bound systems is measured directly for the first time in a neon dimer (Ne2). Interatomic Coulombic decay (ICD) has been identified as the dominant decay mechanism in inner-valence-ionized or excited van-der-Waals and hydrogen bonded systems, the latter being ubiquitous in all biomolecules. The role of ICD in DNA damage thus demands further investigation, e.g. with regard to applications like radiation therapy.
The physics of highly charged ions continues to be one of the most active and interesting fields of atomic physics. A large fraction of the characteristic radiation of such ions lies in the x-ray region and its spectroscopy represents an important experimental tool. The field of x-ray spectroscopy grew directly from the discovery of x radiation by Wilhelm Conrad Rontgen in 1895. The early contributions to atomic physics that arose out of x-ray spectroscopy are well documented and are the subject of many centennial events. In the past, the gross features of most x-ray spectra in the hard x-ray region have been accounted for on a hydrogenic model. In many instances the gross spectral features recorded in the early days of x-ray physics match those observed with state-of-the-art techniques today and many of the early qualitative - terpretations have remained unchanged. It is in the details of the spectra that today's results are superior to those obtained many years ago, and it is in the quantitative and accurate - scriptions that today's predictions are better. A rejuvenation of the field has occurred after the great achievements in the development of new ion sources for production of heavy ions with only one or few electrons. The new tools available to the experimenter allow the exploration of new states of m- ter and allow us to challenge new frontiers in our theoretical understanding of atoms and their interactions with other particles.
This book offers a detailed guide on the journey towards the minimal supersymmetric standard model down the orbifold road. It takes the viewpoint that the chirality of matter fermions is an essential aspect that orbifold compactification allows to derive from higher-dimensional string theories in a straightforward manner. Halfway between textbook and tutorial review, the book is intended for the graduate student and particle phenomenologist wishing to get acquainted with this field.
th This workshop was the 15 in a series that addresses the subject of the dynamics of nuclear reactions. These workshops are dedicated to the concept that bringing together scientists from diverse areas of nuclear reactions promotes the vibrant exchange of ideas. This workshop hosted presentations from experimentalists and theorists, intermediate energy to ultrarelativistic energies, and final results to recent speculations. Many of these scientists would not normally be exposed to the work done in other subfields. Thus the Winter Workshop on Nuclear Dynamics plays a unique role in information exchange and the stimulation of new ides. The field of nuclear dynamics has a bright future. New accelerators are being planned and completed around the world. New detectors are being constructed. New models and theories are being developed to describe these phenomena. The Winter Workshop on Nuclear Dynamics will continue to promote this lively and compelling field of research. WOLFGANG BAUER AND GARY D. WESTFALL v Previous Workshops The following table contains a list of the dates and locations of the previous Winter Workshops on Nuclear Dynamics as well as the members of the organizing committees. The chairpersons of the conferences are underlined.
White dwarfs, neutron stars, and (solar mass) black holes are the collapsed cores of stars which, near the ends of their luminous lives, have shed most of their mass in supernova explosions or other, less spectacular, instabilities. Here gravity crushes matter to realms that lie far beyond present empirical knowledge. This book explores the diverse forms that such compact stars can possibly take, as constrained by the laws of nature: the general principles of relativity and quantum mechanics, the properties of nuclear matter deduced from nuclei, and the asymptotic freedom of quarks at high density. The book is self contained. It reviews general relativity, essential aspects of nuclear and particle physics, and general features of white dwarfs, neutron stars and black holes; it includes background on such matters as stellar formation and evolution, the discovery of pulsars and associated phenomena, and the strange-matter hypothesis. The book develops a theory for the constitution of neutron stars and the more exotic Hyperon Stars, Hybrid Stars (containing a quark matter core surrounded by an intricate lattice of quark and hadronic matter) and Strange Stars and Dwarfs (composed of the three light quark flavors sheathed in a solid skin of heavy ions). This second edition has been revised throughout to clarify discussions and bring data up to date; it includes new figures, several new sections, and new chapters on Bose condensates in neutron stars and on phase transitions.
Gamma-ray astronomy began in the mid-1960s with balloon satellite, and, at very high photon energies, also with ground-based instruments. However, the most significant progress was made in the last decade of the 20th century, when the tree satellite missions SIGMA, Compton, and Beppo-Sax gave a completely new picture of our Universe and made gamma-ray astronomy an integral part of astronomical research. This book, written by well-known experts, gives the first comprehensive presentation of this field of research, addressing both graduate students and researchers. Gamma-ray astronomy helps us to understand the most energetic processes and the most violent events in the Universe. After describing cosmic gamma-ray production and absorption, the instrumentation used in gamma-ray astronomy is explained. The main part of the book deals with astronomical results, including the somewhat surprising result that the gamma-ray sky is continuously changing.
This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. This process, known as laser wakefield acceleration (LWFA), relies on strongly driven plasma waves for the generation of accelerating gradients in the vicinity of several 100 GV/m, a value four orders of magnitude larger than that attainable by conventional accelerators. This thesis demonstrates that laser pulses with an ultrashort duration of 8 fs and a peak power of 6 TW allow the production of electron energies up to 50 MeV via LWFA. The special properties of laser accelerated electron pulses, namely the ultrashort pulse duration, the high brilliance, and the high charge density, open up new possibilities in many applications of these electron beams.
The outcome of a close collaboration between mathematicians and mathematical physicists, these Lecture Notes present the foundations of A. Connes noncommutative geometry, as well as its applications in particular to the field of theoretical particle physics. The coherent and systematic approach makes this book useful for experienced researchers and postgraduate students alike.
The centerpiece of the thesis is the search for muon neutrino to electron neutrino oscillations which would indicate a non-zero mixing angle between the first and third neutrino generations ( 13), currently the holy grail of neutrino physics. The optimal extraction of the electron neutrino oscillation signal is based on the novel library event matching (LEM) method which Ochoa developed and implemented together with colleagues at Caltech and at Cambridge, which improves MINOS (Main Injector Neutrino Oscillator Search) reach for establishing an oscillation signal over any other method. LEM will now be the basis for MINOS final results, and will likely keep MINOS at the forefront of this field until it completes its data taking in 2011. Ochoa and his colleagues also developed the successful plan to run MINOS with a beam tuned for antineutrinos, to make a sensitive test of CPT symmetry by comparing the inter-generational mass splitting for neutrinos and antineutrinos. Ochoa s in-depth, creative approach to the solution of a variety of complex experimental problems is an outstanding example for graduate students and longtime practitioners of experimental physics alike. Some of the most exciting results in this field to emerge in the near future may find their foundations in this thesis.
Quarks, Leptons and The Big Bang, Third Edition, is a clear, readable and self-contained introduction to particle physics and related areas of cosmology. It bridges the gap between non-technical popular accounts and textbooks for advanced students. The book concentrates on presenting the subject from the modern perspective of quarks, leptons and the forces between them. This book will appeal to students, teachers and general science readers interested in fundamental ideas of modern physics. This edition brings the book completely up to date by including advances in particle physics and cosmology, such as the discovery of the Higgs boson, the LIGO gravitational wave discovery and the WMAP and PLANCK results.
This collection of lectures and essays by eminent researchers in the field, many of them nobel laureates, is an outgrow of a special event held at CERN in late 2009, coinciding with the start of LHC operations. Careful transcriptions of the lectures have been worked out, subsequently validated and edited by the lecturers themselves. This unique insight into the history of the field includes also some perspectives on modern developments and will benefit everyone working in the field, as well as historians of science.
Get ready to take another fantastic journey with physicist and author Robert Gilmore, this time with Dorothy, following the yellow building block road through the land of the Wizard of Quarks. Using characters and situations based on the universally known story, The Wizard of Oz, we learn along the way about the fascinating world of particle physics. Classes of particles, from quarks to leptons are shown in atomic garden, where atoms and molecules are produced; see how Dorothy, The Tin Geek, and the Cowardly Lion experience the bizarre world of subatomic particles. Thousands of readers who were delighted by the adventures and science content of Alice in Quantumland are in for another treat, with the prose and illustrations of Robert Gilmore. |
![]() ![]() You may like...
The Complete Book of Fun Maths - 250…
Philip Carter, Ken Russell
Paperback
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
Fundamentals Of Research Methodology For…
Hilla Brink, Gisela Van Rensburg
Paperback
R375
Discovery Miles 3 750
Nutraceutical Beverages - Chemistry…
Fereidoon Shahidi, Deepthi K. Weerasinghe
Hardcover
R2,985
Discovery Miles 29 850
|