![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Particle & high-energy physics
A dense sheet of electrons accelerated to close to the speed of light can act as a tuneable mirror that can generate bright bursts of laser-like radiation in the short wavelength range simply via the reflection of a counter-propagating laser pulse. This thesis investigates the generation of such a relativistic electron mirror structure in a series of experiments accompanied by computer simulations. It is shown that such relativistic mirror can indeed be created from the interaction of a high-intensity laser pulse with a nanometer-scale, ultrathin foil. The reported work gives a intriguing insight into the complex dynamics of high-intensity laser-nanofoil interactions and constitutes a major step towards the development of a relativistic mirror, which could potentially generate bright burst of X-rays on a micro-scale.
In this book the characteristics of synchrotron radiation, including insertion device radiation, are described and derived from first principles. The reader is first introduced to the subject in an intuitive way in order to gain familiarity with the underlying physical processes. A rigorous mathematical derivation of the theory then follows. Since the characteristics of synchrotron radiation are intimately connected with the parameters of the electron beam and its accelerator, a basic introduction to electron beam dynamics and accelerator design is included. The book is aimed at graduate students and scientists working with synchrotron radiation and is designed to serve both as a textbook and as a reference work. It includes numerous exercises, some with solutions.
The Nordic mythological Cosmic Serpent, Ouroboros, is said to be coiled in the depths of the sea, surrounding the Earth with its tail in its mouth. In physics, this snake is a metaphor for the Universe, where the head, symbolizing the largest entity the Cosmos is one with the tail, symbolizing the smallest the fundamental particle. Particle accelerators, colliders and detectors are built by physicists and engineers to uncover the nature of the Universe while discovering its building blocks. Charming the Cosmic Snake takes the readers through the science behind these experimental machines: the physics principles that each stage of the development of particle accelerators helped to reveal, and the particles they helped to discover. The book culminates with a description of the Large Hadron Collider, one of the world s largest and most complex machines operating in a 27-km circumference tunnel near Geneva. That collider may prove or disprove many of our basic theories about the nature of matter. The book provides the material honestly without misrepresenting the science for the sake of excitement or glossing over difficult notions. The principles behind each type of accelerator is made accessible to the undergraduate student and even to a lay reader with cartoons, illustrations and metaphors. Simultaneously, the book also caters to different levels of reader s background and provides additional materials for the more interested or diligent reader.
Electrostatic accelerators are an important and widespread subgroup within the broad spectrum of modern, large particle acceleration devices. They are specifically designed for applications that require high-quality ion beams in terms of energy stability and emittance at comparatively low energies (a few MeV). Their ability to accelerate virtually any kind of ion over a continuously tunable range of energies makes them a highly versatile tool for investigations in many research fields including, but not limited to, atomic and nuclear spectroscopy, heavy ion reactions, accelerator mass spectroscopy as well as ion-beam analysis and modification. The book is divided into three parts. The first part concisely introduces the field of accelerator technology and techniques that emphasize their major modern applications. The second part treats the electrostatic accelerator per se: its construction and operational principles as well as its maintenance. The third part covers all relevant applications in which electrostatic accelerators are the preferred tool for accelerator-based investigations. Since some topics are common to all types of accelerators, Electrostatic Accelerators will also be of value for those more familiar with other types of accelerators.
These proceedings collect the selected contributions of participants of the First Karl Schwarzschild Meeting on Gravitational Physics, held in Frankfurt, Germany to celebrate the 140th anniversary of Schwarzschild's birth. They are grouped into 4 main themes: I. The Life and Work of Karl Schwarzschild; II. Black Holes in Classical General Relativity, Numerical Relativity, Astrophysics, Cosmology, and Alternative Theories of Gravity; III. Black Holes in Quantum Gravity and String Theory; IV. Other Topics in Contemporary Gravitation. Inspired by the foundational principle ``By acknowledging the past, we open a route to the future", the week-long meeting, envisioned as a forum for exchange between scientists from all locations and levels of education, drew participants from 15 countries across 4 continents. In addition to plenary talks from leading researchers, a special focus on young talent was provided, a feature underlined by the Springer Prize for the best student and junior presentations.
This thesis details significant improvements in the understanding of the nuclear EMC effect and nuclear shadowing in neutrino physics, and makes substantial comparisons with electron scattering physics. Specifically, it includes the first systematic study of the EMC ratios of carbon, iron and lead to plastic scintillator of neutrinos. The analysis presented provides the best evidence to date that the EMC effect is similar between electrons and neutrinos within the sensitivity of the data. Nuclear shadowing is measured systematically for the first time with neutrinos. In contrast with the data on the EMC effect, the data on nuclear shadowing support the conclusion that nuclear shadowing may be stronger for neutrinos than it is for electrons. This conclusion points to interesting new nuclear physics.
The first part provides a general introduction to the electronic structure of quasi-two-dimensional systems with a particular focus on group-theoretical methods. The main part of the monograph is devoted to spin-orbit coupling phenomena at zero and nonzero magnetic fields. Throughout the book, the main focus is on a thorough discussion of the physical ideas and a detailed interpretation of the results. Accurate numerical calculations are complemented by simple and transparent analytical models that capture the important physics.
This book is a guide to the use of Monte Carlo techniques in radiation transport. This topic is of great interest for medical physicists. Praised as a "gold standard" for accurate radiotherapy dose calculations, Monte Carlo has stimulated a high level of research activity that has produced thousands of papers within the past few years. The book is designed primarily to address the needs of an academically inclined medical physicist who wishes to learn the technique, as well as experienced users of standard Monte Carlo codes who wish to gain insight into the underlying mathematics of Monte Carlo algorithms. The book focuses on the fundamentals-giving full attention to and explaining the very basic concepts. It also includes advanced topics and covers recent advances such as transport of charged particles in magnetic fields and the grid-based solvers of the Boltzmann equation.
This advanced textbook and reference is the first comprehensive and systematic review of all methods used for the measurement, correction, and control of the beam dynamics of modern particle accelerators. Based on material presented in several lectures at the US Particle Accelerator School, the text is intended for graduate students starting research or work in the field of beam physics. Relativistic beams in linear accelerators and storage rings provide the focus. After a review of linear optics, the text addresses basic and advanced techniques for beam control, plus a variety of methods for the manipulation of particle-beam properties. In each case, specific procedures are illustrated by examples from operational accelerators, e.g., CERN, DESY, SLAC, KEK, LBNL, and FNAL. The book also treats special topics such as injection and extraction methods, beam cooling, spin transport, and polarization. Problems and solutions enhance the book’s usefulness in graduate courses.
This book shows how the study of multi-hadron production phenomena in the years after the founding of CERN culminated in Hagedorn's pioneering idea of limiting temperature, leading on to the discovery of the quark-gluon plasma -- announced, in February 2000 at CERN. Following the foreword by Herwig Schopper -- the Director General (1981-1988) of CERN at the key historical juncture -- the first part is a tribute to Rolf Hagedorn (1919-2003) and includes contributions by contemporary friends and colleagues, and those who were most touched by Hagedorn: Tamas Biro, Igor Dremin, Torleif Ericson, Marek Gazdzicki, Mark Gorenstein, Hans Gutbrod, Maurice Jacob, Istvan Montvay, Berndt Muller, Grazyna Odyniec, Emanuele Quercigh, Krzysztof Redlich, Helmut Satz, Luigi Sertorio, Ludwik Turko, and Gabriele Veneziano. The second and third parts retrace 20 years of developments that after discovery of the Hagedorn temperature in 1964 led to its recognition as the melting point of hadrons into boiling quarks, and to the rise of the experimental relativistic heavy ion collision program. These parts contain previously unpublished material authored by Hagedorn and Rafelski: conference retrospectives, research notes, workshop reports, in some instances abbreviated to avoid duplication of material, and rounded off with the editor's explanatory notes. About the editor: Johann Rafelski is a theoretical physicist working at The University of Arizona in Tucson, USA. Bor n in 1950 in Krakow, Poland, he received his Ph.D. with Walter Greiner in Frankfurt, Germany in 1973. Rafelski arrived at CERN in 1977, where in a joint effort with Hagedorn he contributed greatly to the establishment of the relativistic heavy ion collision, and quark-gluon plasma research fields. Moving on, with stops in Frankfurt and Cape Town, to Arizona, he invented and developed the strangeness quark flavor as the signature of quark-gluon plasma.
The first comprehensive textbook on the optical properties of photonic crystals. It deals not only with the properties of the radiation modes inside the crystals but also with their peculiar optical response to external fields. Has consistently been a good seller (sometimes best-seller) at Optical Society of America meetings. Important recent developments such as the enhancement of stimulated emission, second harmonic generation, quadrature-phase squeezing, and low-threshold lasing are also treated in detail and made understandable. Numerical methods are also emphasized. Provides both an introduction for graduate and undergraduate students and also key information for researchers in this field. The second edition features a new chapter on superfluorescence and updated text and references throughout.
In a ?rst approximation, certainly rough, one can de?ne as non-crystalline materials those which are neither single-crystals nor poly-crystals. Within this category, we canincludedisorderedsolids,softcondensed matter,andlivesystemsamong others. Contrary to crystals, non-crystalline materials have in common that their intrinsic structures cannot be exclusively described by a discrete and periodical function but by a continuous function with short range of order. Structurally these systems have in common the relevance of length scales between those de?ned by the atomic and the macroscopic scale. In a simple ?uid, for example, mobile molecules may freely exchange their positions, so that their new positions are permutations of their old ones. By contrast, in a complex ?uid large groups of molecules may be interc- nected so that the permutation freedom within the group is lost, while the p- mutation between the groups is possible. In this case, the dominant characteristic length, which may de?ne the properties of the system, is not the molecular size but that of the groups. A central aspect of some non-crystalline materials is that they may self-organize. This is of particular importance for Soft-matter materials. Self-organization is characterized by the spontaneous creation of regular structures at different length scales which may exhibit a certain hierarchy that controls the properties of the system. X-ray scattering and diffraction have been for more than a hundred years an essential technique to characterize the structure of materials. Quite often scattering anddiffractionphenomenaexhibitedbynon-crystallinematerialshavebeenreferred to as non-crystalline diffraction.
The review articles collected in this volume present a critical assessment of particle acceleration mechanisms and observations from suprathermal particles in the magnetosphere and heliosphere to high-energy cosmic rays, thus covering a range of energies over seventeen orders of magnitude, from 103 eV to 1020 eV. The main themes are observations of accelerated populations from the magnetosphere to extragalactic scales and assessments of the physical processes underlying particle acceleration in different environments (magnetospheres, the solar atmosphere, the heliosphere, supernova remnants, pulsar wind nebulae and relativistic outflows). Several contributions review the status of shock acceleration in different environments and also the role of turbulence in particle acceleration. Observational results are compared with modelling in different parameter regimes. The book concludes with contributions on the status of particle acceleration research and its future perspectives. This volume is aimed at graduate students and researchers active in astrophysics and space science. Previously published in Space Science Reviews journal, Vol. 173 Nos. 1-4, 2012.
Back in1954,a paper[2] by Bondi and Gold was to pick upona much olderqu- tion and raise anew one that would trigger another longdebate. The old question hadbeenaroundsince the beginning of the twentiethcentury, whenBorn?rstraised it[1] and others followed suit. This was the question of whethera uniformly acc- erated charge (in?at spacetime) would radiateelectromagnetic energy. The new question arose from the claim by Bondi and Gold that (inthe contextof general relativity now)a static charge ina static gravitational ?eld cannot radiateenergy. If this were the case,thenaparticular version of the equivalence principle would thereby be contradicted. This book reviews the problem discovered by Bondi and Gold and discusses the ensuingdebate ascarried on by Fulton and Rohrlich [3], DeWitt and Brehme [4], Mould [5], Boulware [6], andParrott [7].Various solutionshave been proposed by the above (and otherswhoare not discussed here). One of the aims here will be to putforward arather different solution to Bondi and Gold's radiation problem. So eventhough the paperscited are discussed to a large extent in chronological order, the reason for writing this is not justto produce an historical reference. Andeven though the version of general relativity applied hereis entirely consensual, every one of these papersis criticised on at leastoneimportant count, soI suspectthat the resultas a whole should not be described asconsensual.
The main theme of this book is semiclassical methods for systems with spin, in particular methods involving trace formulae and torus quantisation and their applications in the theory of quantum chaos, e.g. the characterisation of spectral correlations. The theoretical tools developed here not only have immediate applications in the theory of quantum chaos - which is the second focus of the book - but also in atomic and mesoscopic physics. Thus the intuitive understanding of semiclassical spin dynamics will also be helpful in emerging subjects like spintronics and quantum computation.
Interesting and new specific results of current theoretical and experimental work in various fields at the frontier of particle scattering and X-ray diffraction are reviewed in this volume. Special emphasis is placed on the study of the microstructure of solids, crystals and liquids, both classically and quantum mechanically. This gives the reader essential insights into the dynamics and properties of these states of matter. The authors address students interested in the physics of quantum solids, crystallography and material science as well as physical chemistry and computational physics.
This book collects extended and specialized reviews on topics linking astrophysics and particle physics at a level intermediate between a graduate student and a young researcher. The book includes also three reviews on observational techniques used in forefront astrophysics and short articles on research performed in Latin America. The reviews, updated and written by specialized researchers, describe the state of the art in the related research topics. This book is a valuable complement not only for research but also for lecturers in specialized course of high energy astrophysics, cosmic ray astrophysics and particle physics."
These lecture notes are based on special courses on Field Theory and Statistical Mechanics given for graduate students at the City College of New York. It is an ideal text for a one-semester course on Quantum Field Theory.
Highly charged ions are the most chemically reactive species known
to mankind. This reactivity is due to the extremely large potential
energy they posses. This textbook deals with the wide range of
interactions which occur when such ions interact with other forms
of matter, especially solid surfaces and gasses. Particular
emphasis is placed on situations where the kinetic energy
associated with the interactions is small so that the effects of
the high potential energy are most apparent. Experimental and
theoretical techniques of investigation are covered in addition to
the findings they produce.
Ion implantation is one of the key processing steps in silicon integrated circuit technology. Some integrated circuits require up to 17 implantation steps and circuits are seldom processed with less than 10 implantation steps. Controlled doping at controlled depths is an essential feature of implantation. Ion beam processing can also be used to improve corrosion resistance, to harden surfaces, to reduce wear and, in general, to improve materials properties. This book presents the physics and materials science of ion implantation and ion beam modification of materials. It covers ion-solid interactions used to predict ion ranges, ion straggling and lattice disorder. Also treated are shallow-junction formation and slicing silicon with hydrogen ion beams. Topics important for materials modification topics, such as ion-beam mixing, stresses, and sputtering, are also described.
Scattering of light by light is a fundamental process arising at the quantum level through vacuum fluctuations. This short book will explain how, remarkably enough, this quantum process can entirely be described in terms classical quantities. This description is derived from general principles, such as causality, unitarity, Lorentz, and gauge symmetries. The reader will be introduced into a rigorous formulation of these fundamental concepts, as well as their physical interpretation and applications.
This book reports on a new result from the KL 0 search at the J-PARC KOTO experiment, which sets an upper limit of 3x10-9 for the branching fraction of the decay at the 90% confidence level, improving the previous best limit by an order of magnitude. To explain the matter-antimatter asymmetry in the universe, still unknown new physics beyond the standard model (SM) that breaks CP symmetry is necessary. The rare decay of a long-lived neutral K meson, KL 0 , is a CP-violating decay. It is an excellent probe to search for new physics because new physics can contribute to the decay and change its branching fraction, while the SM is as small as 3x10-11. However, it is extremely difficult to search for because all of the decay products are neutral and two neutrinos are undetectable. The KL 0 signal is identified by measuring two photons from a 0 with a calorimeter and confirming the absence of any other detectable particles with hermetic veto counters. The book contributes to the analysis of neutron-induced backgrounds which were the dominant background sources in the search. For the background caused by two consecutive hadronic showers in the calorimeter due to a neutron, the author evaluated the background yield using a data-driven approach. For another background caused by an meson production- decays two photons-by a neutron that hits a veto counter near the calorimeter, the author developed an original analysis technique to reduce it. The book also contributes to the analysis of the normalization modes (KL 3 0, KL 2 0, KL 2 ) to measure KL yield, the estimation of the signal acceptance based on a simulation, and the evaluation of the trigger efficiency. As a result, significant improvements in the measurement were achieved, and this is an important step in the continuing higher sensitivity search, which can reach new physics with the energy scales up to O(100-1000 TeV).
An outgrow of an earlier workshop held by the community of European Solar Radio Astronomers (CESRA), this topical volume collects reviews on the current multiwavelength findings and perspectives from the space missions RHESSI, TRACE and SOTTO. The aspects of solar physics dealt with are particle acceleration during flares, large-scale disturbances, and coronal plasma physics.
Dark Energy and Dark Matter are among the greatest mysteries in modern cosmology. The present work explores in depth how large cosmic structures can help us unveil the nature of these components of the Universe. One the one hand, it focuses on a signature that Dark Energy imprints on the Cosmic Microwave Background through its impact on the time-evolution of gravitational potentials: the integrated Sachs-Wolfe (iSW) effect. Another cosmological background, the Cosmic Infrared Background, is considered for the first time in the study of the iSW effect and demonstrated to be a highly efficient and promising tracer. Changing the perspective on the problem, the use of superstructures for iSW detection is then extensively reviewed: using precise solutions to Einstein's general relativity equations, the full iSW effect is computed, especially due to the cosmic voids predicted by the theory. Using measurements from the most recent data, it is subsequently shown how the iSW probes the solidity of the cosmological standard model. On the topic of Dark Matter, an original study is presented, showing that temperature measurements of the intergalactic medium shed light on the nature of Dark Matter particles, providing the tightest constraints on their decay properties.
The astonishing story of twentieth-century physics, told through the twelve experiments that changed our world A 2022 BOOK OF THE YEAR FOR: NEW SCIENTIST * WATERSTONES * SUNDAY TIMES 'A splendid idea, vividly carried out: I enjoyed this book enormously’ PHILIP PULLMAN 'A rich history of beautiful discoveries' ROBIN INCE 'An all-action thriller, laced with some of the most profound ideas humans have ever had’ BRIAN ENO ----------- How did a piece of gold foil completely change our understanding of atoms? What part did a hot air balloon play in the discovery of cosmic rays? How did the experiments in the run-up to the Large Hadron Collider lead to the invention of the World Wide Web? Asking questions has always been at the heart of physics, our unending quest to understand the Universe and how everything in it behaves. How do we know all that we know about the world today? It’s not simply because we have the maths – it’s because we have done the experiments. Accelerator physicist Suzie Sheehy introduces us to the creative and curious people who, through a combination of genius, persistence and luck, staged the ground-breaking experiments of the twentieth century. From the serendipitous discovery of X-rays in a German laboratory, to the scientists trying to prove Einstein wrong (and inadvertently proving him right), The Matter of Everything takes us on a journey through the history of experiments that transformed our world. |
![]() ![]() You may like...
Media and Terrorism in the 21st Century
Elnur Ismayil, Ebru Karadogan Ismayil
Hardcover
R5,784
Discovery Miles 57 840
Handbook on the Physics and Chemistry of…
Jean-Claude G. Bunzli, Vitalij K Pecharsky
Hardcover
R8,500
Discovery Miles 85 000
Materials Characterization Using…
Gerhard Huebschen, Iris Altpeter, …
Hardcover
Volatile Social Movements and the…
Christine Sixta Rinehart
Hardcover
|