![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Probability & statistics
"Et moi, ..., si j'avait su comment en revenir, je One service mathematics bas rendered the human race. It bas put common sense back n'y serais point all .' where it belongs, on the topmost shelf next to lu1esVeme the dusty canister labelled 'discarded nonsense' Eric T. Bell 1be series is divergent; therefore we may be able to do something with it O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and nonlineari ties abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sci ences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One ser vice topology has rendered mathematical physics ... '; 'One service logic has rendered computer science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d 'etre of this series."
The research and its outcomes presented here focus on spatial sampling of agricultural resources. The authors introduce sampling designs and methods for producing accurate estimates of crop production for harvests across different regions and countries. With the help of real and simulated examples performed with the open-source software R, readers will learn about the different phases of spatial data collection. The agricultural data analyzed in this book help policymakers and market stakeholders to monitor the production of agricultural goods and its effects on environment and food safety.
This is the first textbook that allows readers who may be unfamiliar with matrices to understand a variety of multivariate analysis procedures in matrix forms. By explaining which models underlie particular procedures and what objective function is optimized to fit the model to the data, it enables readers to rapidly comprehend multivariate data analysis. Arranged so that readers can intuitively grasp the purposes for which multivariate analysis procedures are used, the book also offers clear explanations of those purposes, with numerical examples preceding the mathematical descriptions. Supporting the modern matrix formulations by highlighting singular value decomposition among theorems in matrix algebra, this book is useful for undergraduate students who have already learned introductory statistics, as well as for graduate students and researchers who are not familiar with matrix-intensive formulations of multivariate data analysis. The book begins by explaining fundamental matrix operations and the matrix expressions of elementary statistics. Then, it offers an introduction to popular multivariate procedures, with each chapter featuring increasing advanced levels of matrix algebra. Further the book includes in six chapters on advanced procedures, covering advanced matrix operations and recently proposed multivariate procedures, such as sparse estimation, together with a clear explication of the differences between principal components and factor analyses solutions. In a nutshell, this book allows readers to gain an understanding of the latest developments in multivariate data science.
This book discusses supply chain management, focusing on developments within modelling the dynamic behaviour of the supply chain. Aimed at postgraduate students, researchers and practitioners, this book provides an in-depth knowledge of the dynamics of supply chains. Business trends such as the globalisation process and the increase of competition across many industrial sectors have forced companies to concentrate on their core competences and to outsource those activities in which they do not excel. As a consequence, companies no longer produce and distribute their goods in isolation, but being part of a supply chain or supply network, i.e. a set of interrelated companies who ultimately deliver the goods and services to the final customer. Despite the prevalence of supply chains as the primary form of production and distribution, their performance can be seriously hampered by the complex dynamics resulting from the collaboration and coordination (or lack thereof) among their members. This book provides the reader with modelling tools to understand, analyse and improve the dynamic behaviour of supply chains. It assembles seminal works on supply chain models and recent developments on the topic in order to provide a comprehensive, unified vision of the field for researchers and practitioners who wish to grasp the challenges of supply chain management. Aside presenting the main elements, equations and performance indicators governing the dynamics of a supply chain, and the book addresses issues such as the effect of timely and accurately sharing the information across members, the influence of restrictions on the productive capacities of their members, or the impact of the variability of the lead times, among others. Furthermore, more complex supply chain structures such as non-serial supply networks or closed-loop supply chains are modelled and discussed. Relevant managerial insights regarding the causes of supply chain underperformance, as well as avenues to improve their efficiency can be extracted from the resulting models.
This BriefBook is a much extended glossary or a much condensed handbook, depending on the way one looks at it. In encyclopedic format, it covers subjects in statistics, computing, analysis, and related fields, resulting in a book that is both an introduction and a reference for scientists and engineers, especially experimental physicists dealing with data analysis.
Graphs are used to understand the relationship between a regression model and the data to which it is fitted. The authors develop new, highly informative graphs for the analysis of regression data and for the detection of model inadequacies. As well as illustrating new procedures, the authors develop the theory of the models used, particularly for generalized linear models. The book provides statisticians and scientists with a new set of tools for data analysis. Software to produce the plots is available on the authors website.
For many practical problems, observations are not independent. In this book, limit behaviour of an important kind of dependent random variables, the so-called mixing random variables, is studied. Many profound results are given, which cover recent developments in this subject, such as basic properties of mixing variables, powerful probability and moment inequalities, weak convergence and strong convergence (approximation), limit behaviour of some statistics with a mixing sample, and many useful tools are provided. Audience: This volume will be of interest to researchers and graduate students in the field of probability and statistics, whose work involves dependent data (variables).
A non-calculus based introduction for students studying statistics, business, engineering, health sciences, social sciences, and education. It presents a thorough coverage of statistical techniques and includes numerous examples largely drawn from actual research studies. Little mathematical background is required and explanations of important concepts are based on providing intuition using illustrative figures and numerical examples. The first part shows how statistical methods are used in diverse fields in answering important questions, while part two covers descriptive statistics and considers the organisation and summarisation of data. Parts three to five cover probability, statistical inference, and more advanced statistical techniques.
This book introduces the fundamentals of research methods and how they apply to the discipline of urban and regional planning. Written at a level appropriate for upper-level undergraduate and beginning master's level students, the text fills a gap in the literature for textbooks on urban planning. Additionally, the book can be used as a reference for planning practitioners and researchers when analyzing quantitative and qualitative data in urban and regional planning and related fields. The volume does not assume advanced knowledge of mathematical formulas. Rather, it begins with the essentials of research methods, such as the identification of the research problems in planning, the literature review, data collection and presentation, descriptive data analysis, and report of findings. Its discipline-specific topics include field research methods, qualitative data analysis, economic and demographic analysis, evaluation research, and methods in sub-disciplines such as land use planning, transportation planning, environmental planning, and housing analysis. Designed with instruction in mind, this book features downloadable materials, including learning outcomes, chapter highlights, chapter review questions, datasets, and certain Excel models. Students will be able to download review questions to enhance the learning process and datasets to practice methods.
Density estimation has evolved enormously since the days of bar plots and histograms, but researchers and users are still struggling with the problem of the selection of the bin widths. This text explores a new paradigm for the data-based or automatic selection of the free parameters of density estimates in general so that the expected error is within a given constant multiple of the best possible error. The paradigm can be used in nearly all density estimates and for most model selection problems, both parametric and nonparametric. It is the first book on this topic. The text is intended for first-year graduate students in statistics and learning theory, and offers a host of opportunities for further research and thesis topics. Each chapter corresponds roughly to one lecture, and is supplemented with many classroom exercises. A one year course in probability theory at the level of Feller's Volume 1 should be more than adequate preparation. Gabor Lugosi is Professor at Universitat Pompeu Fabra in Barcelona, and Luc Debroye is Professor at McGill University in Montreal. In 1996, the authors, together with Lászlo Györfi, published the successful text, A Probabilistic Theory of Pattern Recognition with Springer-Verlag. Both authors have made many contributions in the area of nonparametric estimation.
This volume describes the current state of knowledge of random spatial processes, particularly those arising in physics. The emphasis is on survey articles which describe areas of current interest to probabilists and physicists working on the probability theory of phase transition. Special attention is given to topics deserving further research. The principal contributions by leading researchers concern the mathematical theory of random walk, interacting particle systems, percolation, Ising and Potts models, spin glasses, cellular automata, quantum spin systems, and metastability. The level of presentation and review is particularly suitable for postgraduate and postdoctoral workers in mathematics and physics, and for advanced specialists in the probability theory of spatial disorder and phase transition.
This book establishes a unified framework for dealing with typical engineering complications arising in modern, complex, large-scale networks such as parameter uncertainties, missing measurement and cyber-attack. Distributed Filtering, Control and Synchronization is a timely reflection on methods designed to handle a series of control and signal-processing issues in modern industrial engineering practice in areas like power grids and environmental monitoring. It exploits the latest techniques to handle the emerging mathematical and computational challenges arising from, among other things, the dynamic topologies of distributed systems and in the context of sensor networks and multi-agent systems. These techniques include recursive linear matrix inequalities, local-performance and stochastic analyses and techniques based on matrix theory. Readers interested in the theory and application of control and signal processing will find much to interest them in the new models and methods presented in this book. Academic researchers can find ideas for developing their own research, graduate and advanced undergraduate students will be made aware of the state of the art, and practicing engineers will find methods for addressing practical difficulties besetting modern networked systems
This book addresses many of the gaps in how industry and academia are currently tackling problems associated with big data. It introduces novel concepts, describes the end-to-end process, and connects the various pieces of the puzzle to offer a holistic view. In addition, it explains important concepts for a wide audience, using accessible language, diagrams, examples and analogies to do so. The book is intended for readers working in industry who want to expand their knowledge or pursue a related degree, and employs an industry-centered perspective.
This book develops survey data analysis tools in Python, to create and analyze cross-tab tables and data visuals, weight data, perform hypothesis tests, and handle special survey questions such as Check-all-that-Apply. In addition, the basics of Bayesian data analysis and its Python implementation are presented. Since surveys are widely used as the primary method to collect data, and ultimately information, on attitudes, interests, and opinions of customers and constituents, these tools are vital for private or public sector policy decisions. As a compact volume, this book uses case studies to illustrate methods of analysis essential for those who work with survey data in either sector. It focuses on two overarching objectives: Demonstrate how to extract actionable, insightful, and useful information from survey data; and Introduce Python and Pandas for analyzing survey data.
This book introduces the advances in synchromodal logistics and provides a framework to classify various optimisation problems in this field. It explores the application of this framework to solve a broad range of problems, such as problems with and without a central decision-maker, problems with and without full information, deterministic problems, problems coping with uncertainty, optimisation of a full network design problem. It covers theoretical constructs, such as discrete optimisation, robust optimisation, optimisation under uncertainty, multi-objective optimisation and agent based equilibrium models. Moreover, practical elaborated use cases are presented to deepen understanding. The book gives both researchers and practitioners a good overview of the field of synchromodal optimisation problems and offers the reader practical methods for modelling and problem-solving.
This text is an introduction to harmonic analysis on symmetric spaces, focusing on advanced topics such as higher rank spaces, positive definite matrix space and generalizations. It is intended for beginning graduate students in mathematics or researchers in physics or engineering. As with the introductory book entitled "Harmonic Analysis on Symmetric Spaces - Euclidean Space, the Sphere, and the Poincare Upper Half Plane, the style is informal with an emphasis on motivation, concrete examples, history, and applications. The symmetric spaces considered here are quotients X=G/K, where G is a non-compact real Lie group, such as the general linear group GL(n,P) of all n x n non-singular real matrices, and K=O(n), the maximal compact subgroup of orthogonal matrices. Other examples are Siegel's upper half "plane" and the quaternionic upper half "plane". In the case of the general linear group, one can identify X with the space Pn of n x n positive definite symmetric matrices. Many corrections and updates have been incorporated in this new edition. Updates include discussions of random matrix theory and quantum chaos, as well as recent research on modular forms and their corresponding L-functions in higher rank. Many applications have been added, such as the solution of the heat equation on Pn, the central limit theorem of Donald St. P. Richards for Pn, results on densest lattice packing of spheres in Euclidean space, and GL(n)-analogs of the Weyl law for eigenvalues of the Laplacian in plane domains. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, fundamental domains in X for discrete groups (such as the modular group GL(n,Z) of n x n matrices with integer entries and determinant +/-1), connections with the problem of finding densest lattice packings of spheres in Euclidean space, automorphic forms, Hecke operators, L-functions, and the Selberg trace formula and its applications in spectral theory as well as number theory.
Thorough presentation of the problem of portfolio optimization, leading in a natural way to the Capital Market Theory Dynamic programming and the optimal portfolio selection-consumption problem through time An intuitive approach to Brownian motion and stochastic integral models for continuous time problems The Black-Scholes equation for simple European option values, derived in several different ways A chapter on several types of exotic options and one on material on the management of risk in several contexts
This book contains select chapters on support vector algorithms from different perspectives, including mathematical background, properties of various kernel functions, and several applications. The main focus of this book is on orthogonal kernel functions, and the properties of the classical kernel functions-Chebyshev, Legendre, Gegenbauer, and Jacobi-are reviewed in some chapters. Moreover, the fractional form of these kernel functions is introduced in the same chapters, and for ease of use for these kernel functions, a tutorial on a Python package named ORSVM is presented. The book also exhibits a variety of applications for support vector algorithms, and in addition to the classification, these algorithms along with the introduced kernel functions are utilized for solving ordinary, partial, integro, and fractional differential equations. On the other hand, nowadays, the real-time and big data applications of support vector algorithms are growing. Consequently, the Compute Unified Device Architecture (CUDA) parallelizing the procedure of support vector algorithms based on orthogonal kernel functions is presented. The book sheds light on how to use support vector algorithms based on orthogonal kernel functions in different situations and gives a significant perspective to all machine learning and scientific machine learning researchers all around the world to utilize fractional orthogonal kernel functions in their pattern recognition or scientific computing problems.
This book provides methods and applications of latent class analysis, and the following topics are taken up in the focus of discussion: basic latent structure models in a framework of generalized linear models, exploratory latent class analysis, latent class analysis with ordered latent classes, a latent class model approach for analyzing learning structures, the latent Markov analysis for longitudinal data, and path analysis with latent class models. The maximum likelihood estimation procedures for latent class models are constructed via the expectation-maximization (EM) algorithm, and along with it, latent profile and latent trait models are also treated. Entropy-based discussions for latent class models are given as advanced approaches, for example, comparison of latent classes in a latent class cluster model, assessing latent class models, path analysis, and so on. In observing human behaviors and responses to various stimuli and test items, it is valid to assume they are dominated by certain factors. This book plays a significant role in introducing latent structure analysis to not only young researchers and students studying behavioral sciences, but also to those investigating other fields of scientific research.
Biostatistics for the Biological and Health Sciences brings statistical theories and methods to life with real applications, emphasis on real data, and a friendly writing style. It suits a variety of students in their first statistics course and uses minimal algebra. Abundant examples and emphasis on real data help you develop skills in critical thinking, technology and communication. This collaboration from 2 biological sciences experts and the author of the #1 statistics book is an excellent introduction that is also highly readable, understandable and relevant. The 3rd Edition incorporates the latest methods used by professional statisticians. It offers a wealth of new data sets, examples, and exercises (such as those involving clinical trials, COVID-19, biometrics, and anthropometrics) and includes features that address all recommendations included in the Guidelines for Assessment and Instruction in Statistics Education (GAISE) as recommended by the American Statistical Association.
This book constitutes a selection of the best papers from the 15th International Conference on Business Excellence, Digital Economy and New Value Creation, ICBE 2021, held in Bucharest, Romania, in March 2021. This book is a collection of research findings and perspectives related to the digital economy and new value creation, led by the set of improvements and changes in the economic, societal and technological structures and processes towards the effort of reaching the sustainability goals.
Iterative Methods for Queuing and Manufacturing Systems introduces the recent advances and developments in iterative methods for solving Markovian queuing and manufacturing problems.Key highlights include:- an introduction to simulation and simulation software packages;- Markovian models with applications in inventory control and supply chains; future research directions.With numerous exercises and fully-worked examples, this book will be essential reading for anyone interested in the formulation and computation of queuing and manufacturing systems but it will be of particular interest to students, practitioners and researchers in Applied Mathematics, Scientific Computing and Operational Research.
A Problem Solving Approach Now available with Macmillan's Achieve, Introductory Statistics helps students develop the fundamental lifelong skill of solving problems and interpreting solutions in real-world terms. One of our goals was to make this problem-solving approach accessible and easy to apply in many situations. We certainly want students to appreciate the beauty of statistics and connections to so many other disciplines. However, it is even more important for students to be able to apply problem-solving skills to a wide range of academic and career pursuits, including business, science and technology, and education. Achieve for Introductory Statistics connects the problem-solving approach and real-world examples in the book to rich digital resources that foster further understanding and application of statistics. Assets in Achieve support learning before, during, and after class for students, while providing instructors with class performance analytics in an easy-to-use interface. |
You may like...
Statistics for Management and Economics
Gerald Keller, Nicoleta Gaciu
Paperback
Order Statistics: Applications, Volume…
Narayanaswamy Balakrishnan, C.R. Rao
Hardcover
R3,377
Discovery Miles 33 770
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
Integrated Population Biology and…
Arni S.R. Srinivasa Rao, C.R. Rao
Hardcover
R6,219
Discovery Miles 62 190
|