Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Probability & statistics
This monograph concisely but thoroughly introduces the reader to the field of mathematical immunology. The book covers first basic principles of formulating a mathematical model, and an outline on data-driven parameter estimation and model selection. The authors then introduce the modeling of experimental and human infections and provide the reader with helpful exercises. The target audience primarily comprises researchers and graduate students in the field of mathematical biology who wish to be concisely introduced into mathematical immunology.
This book discusses the need to carefully and prudently apply various regression techniques in order to obtain the full benefits. It also describes some of the techniques developed and used by the authors, presenting their innovative ideas regarding the formulation and estimation of regression decomposition models, hidden Markov chain, and the contribution of regressors in the set-theoretic approach, calorie poverty rate, and aggregate growth rate. Each of these techniques has applications that address a number of unanswered questions; for example, regression decomposition techniques reveal intra-household gender inequalities of consumption, intra-household allocation of resources and adult equivalent scales, while Hidden Markov chain models can forecast the results of future elections. Most of these procedures are presented using real-world data, and the techniques can be applied in other similar situations. Showing how difficult questions can be answered by developing simple models with simple interpretation of parameters, the book is a valuable resource for students and researchers in the field of model building.
This book explores widely used seasonal adjustment methods and recent developments in real time trend-cycle estimation. It discusses in detail the properties and limitations of X12ARIMA, TRAMO-SEATS and STAMP - the main seasonal adjustment methods used by statistical agencies. Several real-world cases illustrate each method and real data examples can be followed throughout the text. The trend-cycle estimation is presented using nonparametric techniques based on moving averages, linear filters and reproducing kernel Hilbert spaces, taking recent advances into account. The book provides a systematical treatment of results that to date have been scattered throughout the literature. Seasonal adjustment and real time trend-cycle prediction play an essential part at all levels of activity in modern economies. They are used by governments to counteract cyclical recessions, by central banks to control inflation, by decision makers for better modeling and planning and by hospitals, manufacturers, builders, transportation, and consumers in general to decide on appropriate action. This book appeals to practitioners in government institutions, finance and business, macroeconomists, and other professionals who use economic data as well as academic researchers in time series analysis, seasonal adjustment methods, filtering and signal extraction. It is also useful for graduate and final-year undergraduate courses in econometrics and time series with a good understanding of linear regression and matrix algebra, as well as ARIMA modelling.
Most probability problems involve random variables indexed by space and/or time. These problems almost always have a version in which space and/or time are taken to be discrete. This volume deals with areas in which the discrete version is more natural than the continuous one, perhaps even the only one than can be formulated without complicated constructions and machinery. The 5 papers of this volume discuss problems in which there has been significant progress in the last few years; they are motivated by, or have been developed in parallel with, statistical physics. They include questions about asymptotic shape for stochastic growth models and for random clusters; existence, location and properties of phase transitions; speed of convergence to equilibrium in Markov chains, and in particular for Markov chains based on models with a phase transition; cut-off phenomena for random walks. The articles can be read independently of each other. Their unifying theme is that of models built on discrete spaces or graphs. Such models are often easy to formulate. Correspondingly, the book requires comparatively little previous knowledge of the machinery of probability.
This book is concerned with a class of discrete-time stochastic control processes known as controlled Markov processes (CMP's), also known as Markov decision processes or Markov dynamic programs. Starting in the mid-1950swith Richard Bellman, many contributions to CMP's have been made, and applications to engineering, statistics and operations research, among other areas, have also been developed. The purpose of this book is to present some recent developments on the theory of adaptive CMP's, i. e., CMP's that depend on unknown parameters. Thus at each decision time, the controller or decision-maker must estimate the true parameter values, and then adapt the control actions to the estimated values. We do not intend to describe all aspects of stochastic adaptive control; rather, the selection of material reflects our own research interests. The prerequisite for this book is a knowledgeof real analysis and prob ability theory at the level of, say, Ash (1972) or Royden (1968), but no previous knowledge of control or decision processes is required. The pre sentation, on the other hand, is meant to beself-contained, in the sensethat whenever a result from analysisor probability is used, it is usually stated in full and references are supplied for further discussion, if necessary. Several appendices are provided for this purpose. The material is divided into six chapters. Chapter 1 contains the basic definitions about the stochastic control problems we are interested in; a brief description of some applications is also provided."
About 60 scientists and students attended the 96' International Conference on Nonlinear Programming, which was held September 2-5 at Institute of Compu tational Mathematics and Scientific/Engineering Computing (ICMSEC), Chi nese Academy of Sciences, Beijing, China. 25 participants were from outside China and 35 from China. The conference was to celebrate the 60's birthday of Professor M.J.D. Powell (Fellow of Royal Society, University of Cambridge) for his many contributions to nonlinear optimization. On behalf of the Chinese Academy of Sciences, vice president Professor Zhi hong Xu attended the opening ceremony of the conference to express his warm welcome to all the participants. After the opening ceremony, Professor M.J.D. Powell gave the keynote lecture "The use of band matrices for second derivative approximations in trust region methods." 13 other invited lectures on recent advances of nonlinear programming were given during the four day meeting: "Primal-dual methods for nonconvex optimization" by M. H. Wright (SIAM President, Bell Labs), "Interior point trajectories in semidefinite programming" by D. Goldfarb (Columbia University, Editor-in-Chief for Series A of Mathe matical Programming), "An approach to derivative free optimization" by A."
In honor of professor and renowned statistician R. Dennis Cook, this festschrift explores his influential contributions to an array of statistical disciplines ranging from experimental design and population genetics, to statistical diagnostics and all areas of regression-related inference and analysis. Since the early 1990s, Prof. Cook has led the development of dimension reduction methodology in three distinct but related regression contexts: envelopes, sufficient dimension reduction (SDR), and regression graphics. In particular, he has made fundamental and pioneering contributions to SDR, inventing or co-inventing many popular dimension reduction methods, such as sliced average variance estimation, the minimum discrepancy approach, model-free variable selection, and sufficient dimension reduction subspaces. A prolific researcher and mentor, Prof. Cook is known for his ability to identify research problems in statistics that are both challenging and important, as well as his deep appreciation for the applied side of statistics. This collection of Prof. Cook's collaborators, colleagues, friends, and former students reflects the broad array of his contributions to the research and instructional arenas of statistics.
Statistical Methods for Dynamic Treatment Regimes shares state of the art of statistical methods developed to address questions of estimation and inference for dynamic treatment regimes, a branch of personalized medicine. This volume demonstrates these methods with their conceptual underpinnings and illustration through analysis of real and simulated data. These methods are immediately applicable to the practice of personalized medicine, which is a medical paradigm that emphasizes the systematic use of individual patient information to optimize patient health care. This is the first single source to provide an overview of methodology and results gathered from journals, proceedings, and technical reports with the goal of orienting researchers to the field. The first chapter establishes context for the statistical reader in the landscape of personalized medicine. Readers need only have familiarity with elementary calculus, linear algebra, and basic large-sample theory to use this text. Throughout the text, authors direct readers to available code or packages in different statistical languages to facilitate implementation. In cases where code does not already exist, the authors provide analytic approaches in sufficient detail that any researcher with knowledge of statistical programming could implement the methods from scratch. This will be an important volume for a wide range of researchers, including statisticians, epidemiologists, medical researchers, and machine learning researchers interested in medical applications. Advanced graduate students in statistics and biostatistics will also find material in Statistical Methods for Dynamic Treatment Regimes to be a critical part of their studies.
This proceedings volume presents new methods and applications in Operational Research and Management Science with a special focus on Business Analytics. Featuring selected contributions from the XIV Balkan Conference on Operational Research held in Thessaloniki, Greece in 2020 (BALCOR 2020), it addresses applications and methodological tools or techniques in various areas of Operational Research, such as agent-based modelling, big data and business analytics, data envelopment analysis, data mining, decision support systems, fuzzy systems, game theory, heuristics, metaheuristics and nature inspired optimization algorithms, linear and nonlinear programming, machine learning, multiple criteria decision analysis, network design and optimization, queuing theory, simulation and statistics.
Modern physics is confronted with a large variety of complex spatial patterns. Although both spatial statisticians and statistical physicists study random geometrical structures, there has been only little interaction between the two up to now because of different traditions and languages. This volume aims to change this situation by presenting in a clear way fundamental concepts of spatial statistics which are of great potential value for condensed matter physics and materials sciences in general, and for porous media, percolation and Gibbs processes in particular. Geometric aspects, in particular ideas of stochastic and integral geometry, play a central role throughout. With nonspecialist researchers and graduate students also in mind, prominent physicists give an excellent introduction here to modern ideas of statistical physics pertinent to this exciting field of research.
As climate change continues to dominate the international environmental agenda, phenology - the study of the timing of recurring biological events - has received increasing research attention, leading to an emerging consensus that phenology can be viewed as an early warning system' for climate change impact. A multidisciplinary science involving many branches of ecology, geography and remote sensing, phenology to date has lacked a coherent methodological text. This new synthesis, including contributions from many of the world's leading phenologists, therefore fills a critical gap in the current biological literature. Providing critiques of current methods, as well as detailing novel and emerging methodologies, the book, with its extensive suite of references, provides readers with an understanding of both the theoretical basis and the potential applications required to adopt and adapt new analytical and design methods. An invaluable source book for researchers and students in ecology and climate change science, the book also provides a useful reference for practitioners in a range of sectors, including human health, fisheries, forestry, agriculture and natural resource management.
Outstanding User Interfaces with Shiny provides the reader with necessary knowledge to develop beautiful and highly interactive user interfaces. It gives the minimum requirements in HTML/JavaScript and CSS to be able to extend already existing Shiny layouts or develop new templates from scratch. Suitable for anyone with some experience of Shiny, package development and software engineering best practices, this book is an ideal guide for graduates and professionals who wish to bring their app design to the next level. Key Features: Provides a survival kit in web development to seamlessly get started with HTML/CSS/JavaScript Leverage CSS and Sass and higher-level tools like {bslib} to substantially enhance the design of your app in no time A comprehensive guide to the {htmltools} package to seamlessly customize existing layouts Describes in detail how Shiny inputs work and how R and JavaScript communicate Details all the necessary steps to create a production-grade custom template from scratch: packaging, shiny tags creation, validating and testing R components and JavaScript Expose common web development debugging technics Provides a list of existing templates, resources to get started and to explore
TThis book illustrates recent advances in applications of partial order theory and Hasse diagram techniques to data analysis, mainly in the socio-economic and environmental sciences. For years, partial order theory has been considered a fundamental branch of mathematics of only theoretical interest. In recent years, its effectiveness as a tool for data analysis is increasingly being realized and many applications of partially ordered sets to real problems in statistics and applied sciences have appeared. Main examples pertain to the analysis of complex and multidimensional systems of ordinal data and to problems of multi-criteria decision making, so relevant in social and environmental sciences. Partial Order Concepts in Applied Sciences presents new theoretical and methodological developments in partial order for data analysis, together with a wide range of applications to different topics: multidimensional poverty, economic development, inequality measurement, ecology and pollution, and biology, to mention a few. The book is of interest for applied mathematicians, statisticians, social scientists, environmental scientists and all those aiming at keeping pace with innovation in this interesting, growing and promising research field.
Volume 1: (edited by Keith W. Hipel) In this landmark collection of papers, highly respected scientists and engineers from around the world present the latest research results in extreme value analyses for floods and droughts. Two approaches that are commonly employed in flood frequency analyses are the maximum annual flood and partial duration series or peak over threshold procedures. Recent theoretical advances as well as illustrative applications are described in detail for each of these approaches. Additionally, droughts and storms are systematically studied using appropriate probabilistic models. A major part of the volume is devoted to frequency analyses and fitting extreme value distributions to hydrological data. Other thought-provoking topics include regionalization techniques, distributed models, entropy and fractal analysis. Volume 1 is of interest to researchers, teachers, students and practitioners who wish to place themselves at the leading edge of flood frequency and drought analyses. Volume 2: (edited by Keith W. Hipel) World renowned scientists present valuable contributions to stochastic and statistical modelling of groundwater and surface water systems. The philosophy of probabilistic modelling in the hydrological sciences is put into proper perspective and the importance of stochastic differential equations in the environmental sciences is explained and illustrated. The new research ideas put forward in groundwater modelling will assist decision makers in tackling challenging problems such as controlling pollution of underground aquifers and obtaining adequate water supplies. Additionally, different types of stochastic models are used in modelling a range ofinteresting surface water problems. Other topics covered in this landmark volume include stochastic optimization, moment analysis, carbon dioxide modelling and rainfall prediction. Volume 2 is of interest to researchers, teachers, students and practitioners who wish to be at the leading edge of stochastic and statistical modelling in the environmental sciences. Volume 3: (edited by Keith W. Hipel; A. Ian McLeod; U.S. Panu; Vijay P. Singh) International experts from around the globe present a rich variety of intriguing developments in time series analysis in hydrology and environmental engineering. Climatic change is of great concern to everyone and significant contributions to this challenging research topic are put forward by internationally renowned authors. A range of interesting applications in hydrological forecasting are given for case studies in reservoir operation in North America, Asia and South America. Additionally, progress in entropy research is described and entropy concepts are applied to various water resource systems problems. Neural networks are employed for forecasting runoff and water demand. Moreover, graphical, nonparametric and parametric trend analyses methods are compared and applied to water quality time series. Other topics covered in this landmark volume include spatial analyses, spectral analyses and different methods for stream-flow modelling. Volume 3 constitutes an invaluable resource for researchers, teachers, students and practitioners who wish to be at the forefront of time series analysis in the environmental sciences. Volume 4: (edited by Keith W. Hipel; Liping Fang) In this landmark set of papers, experts from around the world present the latest andmost promising approaches to both the theory and practice of effective environmental management. To achieve sustainable development, organizations and individual citizens must comply with environmental laws and regulations. Accordingly, a major contribution of this book is the presentation of original techniques for designing effective environmental policies, regulations, inspection procedures and monitoring systems. Interesting methods for modelling risk and decision making problems are discussed from an environmental management perspective. Moreover, knowledge-based techniques for handling environmental problems are also investigated. Finally, the last main part of the book describes optimal approaches to reservoir operation and control that take into account appropriate multiple objectives. Volume 4 is of direct interest to researchers, teachers, students and practitioners concerned with the latest developments in environmental management and sustainable development.
Beginning graduate students in mathematical sciences and related areas in physical and computer sciences and engineering are expected to be familiar with a daunting breadth of mathematics, but few have such a background. This bestselling book helps students fill in the gaps in their knowledge. Thomas A. Garrity explains the basic points and a few key results of all the most important undergraduate topics in mathematics, emphasizing the intuitions behind the subject. The explanations are accompanied by numerous examples, exercises and suggestions for further reading that allow the reader to test and develop their understanding of these core topics. Featuring four new chapters and many other improvements, this second edition of All the Math You Missed is an essential resource for advanced undergraduates and beginning graduate students who need to learn some serious mathematics quickly.
Statistics for Sport and Exercise Studies guides the student through the full research process, from selecting the most appropriate statistical procedure, to analysing data, to the presentation of results, illustrating every key step in the process with clear examples, case-studies and data taken from real sport and exercise settings. Every chapter includes a range of features designed to help the student grasp the underlying concepts and relate each statistical procedure to their own research project, including definitions of key terms, practical exercises, worked examples and clear summaries. The book also offers an in-depth and practical guide to using SPSS in sport and exercise research, the most commonly used data analysis software in sport and exercise departments. In addition, a companion website includes more than 100 downloadable data sets and work sheets for use in or out of the classroom, full solutions to exercises contained in the book, plus over 1,300 PowerPoint slides for use by tutors and lecturers. Statistics for Sport and Exercise Studies is a complete, user-friendly introduction to the use of statistical tests, techniques and procedures in sport, exercise and related subjects. Visit the companion website at: www.routledge.com/cw/odonoghue
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.
Graduate students and postgraduates in Mathematics, Engineering and the Natural Sciences want to understand Applied Mathematics for the solution of everyday problems. Scholars of Roland Bulirsch working at universities, at research institutions and in industry combine research and review papers in this anthology. Their work is summed up under the title "From Nano to Space Applied Mathematics Inspired by Roland Bulirsch." More than 20 contributions are divided into scales: nano, micro, macro, space and real life. The contributions survey current research and present case studies very interesting and informative for both graduate students and postgraduates. The contributions show how modern Applied Mathematics influences our everyday lives. Several contributions include complex graphics and illustrations, many of them in color."
This is the second volume of the reworked second edition of a key work on Point Process Theory. Fully revised and updated by the authors who have reworked their 1988 first edition, it brings together the basic theory of random measures and point processes in a unified setting and continues with the more theoretical topics of the first edition: limit theorems, ergodic theory, Palm theory, and evolutionary behaviour via martingales and conditional intensity. The very substantial new material in this second volume includes expanded discussions of marked point processes, convergence to equilibrium, and the structure of spatial point processes.
This monograph deals with spatially dependent nonstationary time series in a way accessible to both time series econometricians wanting to understand spatial econometics, and spatial econometricians lacking a grounding in time series analysis. After charting key concepts in both time series and spatial econometrics, the book discusses how the spatial connectivity matrix can be estimated using spatial panel data instead of assuming it to be exogenously fixed. This is followed by a discussion of spatial nonstationarity in spatial cross-section data, and a full exposition of non-stationarity in both single and multi-equation contexts, including the estimation and simulation of spatial vector autoregression (VAR) models and spatial error correction (ECM) models. The book reviews the literature on panel unit root tests and panel cointegration tests for spatially independent data, and for data that are strongly spatially dependent. It provides for the first time critical values for panel unit root tests and panel cointegration tests when the spatial panel data are weakly or spatially dependent. The volume concludes with a discussion of incorporating strong and weak spatial dependence in non-stationary panel data models. All discussions are accompanied by empirical testing based on a spatial panel data of house prices in Israel.
This volume contains a unique collection of mathematical essays that resent a battery of techniques and approaches for the statistical analysis of heavy tailed distributions and processes. The articles cover a number of applications of heavy tailed modeling, running the gamut from insurance and finance, to telecommunications and the World Wide Web, and classical signal/noise detection problems.
Illustrate the usefulness and abuse of statistics in automotive safety arguments that are hidden from public view Show the importance of data and statistics in making safety-related changes that ultimately save or cost lives Discuss the impact of electric vehicles and autonomous vehicles on car safety
A "health disparity" refers to a higher burden of illness, injury, disability, or mortality experienced by one group relative to another. These disparities may be due to many factors including age, income, race, etc. This book will focus on their estimation, ranging from classical approaches including the quantification of a disparity, to more formal modelling, to modern approaches involving more flexible computational approaches. Features: * Presents an overview of methods and applications of health disparity estimation * First book to synthesize research in this field in a unified statistical framework * Covers classical approaches, and builds to more modern computational techniques * Includes many worked examples and case studies using real data * Discusses available software for estimation The book is designed primarily for researchers and graduate students in biostatistics, data science, and computer science. It will also be useful to many quantitative modelers in genetics, biology, sociology, and epidemiology. |
You may like...
Statistics for Business and Economics…
Paul Newbold, William Carlson, …
R2,178
Discovery Miles 21 780
Mathematical Statistics with…
William Mendenhall, Dennis Wackerly, …
Paperback
Statistics For Business And Economics
David Anderson, James Cochran, …
Paperback
(1)
R2,342 Discovery Miles 23 420
Biostatistics for the Biological and…
Mario Triola, Marc Triola, …
Paperback
R2,175
Discovery Miles 21 750
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
|