Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Probability & statistics
Compound renewal processes (CRPs) are among the most ubiquitous models arising in applications of probability. At the same time, they are a natural generalization of random walks, the most well-studied classical objects in probability theory. This monograph, written for researchers and graduate students, presents the general asymptotic theory and generalizes many well-known results concerning random walks. The book contains the key limit theorems for CRPs, functional limit theorems, integro-local limit theorems, large and moderately large deviation principles for CRPs in the state space and in the space of trajectories, including large deviation principles in boundary crossing problems for CRPs, with an explicit form of the rate functionals, and an extension of the invariance principle for CRPs to the domain of moderately large and small deviations. Applications establish the key limit laws for Markov additive processes, including limit theorems in the domains of normal and large deviations.
This book provides robust analysis and synthesis tools for Markovian jump systems in the finite-time domain with specified performances. It explores how these tools can make the systems more applicable to fields such as economic systems, ecological systems and solar thermal central receivers, by limiting system trajectories in the desired bound in a given time interval. Robust Control for Discrete-Time Markovian Jump Systems in the Finite-Time Domain focuses on multiple aspects of finite-time stability and control, including: finite-time H-infinity control; finite-time sliding mode control; finite-time multi-frequency control; finite-time model predictive control; and high-order moment finite-time control for multi-mode systems and also provides many methods and algorithms to solve problems related to Markovian jump systems with simulation examples that illustrate the design procedure and confirm the results of the methods proposed. The thorough discussion of these topics makes the book a useful guide for researchers, industrial engineers and graduate students alike, enabling them systematically to establish the modeling, analysis and synthesis for Markovian jump systems in the finite-time domain.
"Statistical Modeling, Analysis and Management of Fuzzy Data," or SMFD for short, is an important contribution to a better understanding of a basic issue -an issue which has been controversial, and still is though to a lesser degree. In substance, the issue is: are fuzziness and randomness distinct or coextensive facets of uncertainty? Are the theories of fuzziness and random ness competitive or complementary? In SMFD, these and related issues are addressed with rigor, authority and insight by prominent contributors drawn, in the main, from probability theory, fuzzy set theory and data analysis com munities. First, a historical perspective. The almost simultaneous births -close to half a century ago-of statistically-based information theory and cybernetics were two major events which marked the beginning of the steep ascent of probability theory and statistics in visibility, influence and importance. I was a student when information theory and cybernetics were born, and what is etched in my memory are the fascinating lectures by Shannon and Wiener in which they sketched their visions of the coming era of machine intelligence and automation of reasoning and decision processes. What I heard in those lectures inspired one of my first papers (1950) "An Extension of Wiener's Theory of Prediction," and led to my life-long interest in probability theory and its applications to information processing, decision analysis and control."
A carefully prepared account of the basic ideas in Fourier analysis and its applications to the study of partial differential equations. The author succeeds to make his exposition accessible to readers with a limited background, for example, those not acquainted with the Lebesgue integral. Readers should be familiar with calculus, linear algebra, and complex numbers. At the same time, the author has managed to include discussions of more advanced topics such as the Gibbs phenomenon, distributions, Sturm-Liouville theory, Cesaro summability and multi-dimensional Fourier analysis, topics which one usually does not find in books at this level. A variety of worked examples and exercises will help the readers to apply their newly acquired knowledge.
A simplified approach to Malliavin calculus adapted to Poisson random measures is developed and applied in this book. Called the "lent particle method" it is based on perturbation of the position of particles. Poisson random measures describe phenomena involving random jumps (for instance in mathematical finance) or the random distribution of particles (as in statistical physics). Thanks to the theory of Dirichlet forms, the authors develop a mathematical tool for a quite general class of random Poisson measures and significantly simplify computations of Malliavin matrices of Poisson functionals. The method gives rise to a new explicit calculus that they illustrate on various examples: it consists in adding a particle and then removing it after computing the gradient. Using this method, one can establish absolute continuity of Poisson functionals such as Levy areas, solutions of SDEs driven by Poisson measure and, by iteration, obtain regularity of laws. The authors also give applications to error calculus theory. This book will be of interest to researchers and graduate students in the fields of stochastic analysis and finance, and in the domain of statistical physics. Professors preparing courses on these topics will also find it useful. The prerequisite is a knowledge of probability theory.
Recent developments show that probability methods have become a very powerful tool in such different areas as statistical physics, dynamical systems, Riemannian geometry, group theory, harmonic analysis, graph theory and computer science. This volume is an outcome of the special semester 2001 - Random Walks held at the Schroedinger Institute in Vienna, Austria. It contains original research articles with non-trivial new approaches based on applications of random walks and similar processes to Lie groups, geometric flows, physical models on infinite graphs, random number generators, Lyapunov exponents, geometric group theory, spectral theory of graphs and potential theory. Highlights are the first survey of the theory of the stochastic Loewner evolution and its applications to percolation theory (a new rapidly developing and very promising subject at the crossroads of probability, statistical physics and harmonic analysis), surveys on expander graphs, random matrices and quantum chaos, cellular automata and symbolic dynamical systems, and others. The contributors to the volume are the leading experts in the area. The book will provide a valuable source both for active researchers and graduate students in the respective fields.
This monograph provides, for the first time, a most comprehensive statistical account of composite sampling as an ingenious environmental sampling method to help accomplish observational economy in a variety of environmental and ecological studies. Sampling consists of selection, acquisition, and quantification of a part of the population. But often what is desirable is not affordable, and what is affordable is not adequate. How do we deal with this dilemma? Operationally, composite sampling recognizes the distinction between selection, acquisition, and quantification. In certain applications, it is a common experience that the costs of selection and acquisition are not very high, but the cost of quantification, or measurement, is substantially high. In such situations, one may select a sample sufficiently large to satisfy the requirement of representativeness and precision and then, by combining several sampling units into composites, reduce the cost of measurement to an affordable level. Thus composite sampling offers an approach to deal with the classical dilemma of desirable versus affordable sample sizes, when conventional statistical methods fail to resolve the problem. Composite sampling, at least under idealized conditions, incurs no loss of information for estimating the population means. But an important limitation to the method has been the loss of information on individual sample values, such as the extremely large value. In many of the situations where individual sample values are of interest or concern, composite sampling methods can be suitably modified to retrieve the information on individual sample values that may be lost due to compositing. In this monograph, we present statistical solutions to these and other issues that arise in the context of applications of composite sampling. Content Level Research
Machine learning is a novel discipline concerned with the analysis of large and multiple variables data. It involves computationally intensive methods, like factor analysis, cluster analysis, and discriminant analysis. It is currently mainly the domain of computer scientists, and is already commonly used in social sciences, marketing research, operational research and applied sciences. It is virtually unused in clinical research. This is probably due to the traditional belief of clinicians in clinical trials where multiple variables are equally balanced by the randomization process and are not further taken into account. In contrast, modern computer data files often involve hundreds of variables like genes and other laboratory values, and computationally intensive methods are required. This book was written as a hand-hold presentation accessible to clinicians, and as a must-read publication for those new to the methods.
This IMA Volume in Mathematics and its Applications RANDOM SETS: THEORY AND APPLICATIONS is based on the proceedings of a very successful 1996 three-day Summer Program on "Application and Theory of Random Sets." We would like to thank the scientific organizers: John Goutsias (Johns Hopkins University), Ronald P.S. Mahler (Lockheed Martin), and Hung T. Nguyen (New Mexico State University) for their excellent work as organizers of the meeting and for editing the proceedings. We also take this opportunity to thank the Army Research Office (ARO), the Office ofNaval Research (0NR), and the Eagan, MinnesotaEngineering Center ofLockheed Martin Tactical Defense Systems, whose financial support made the summer program possible. Avner Friedman Robert Gulliver v PREFACE "Later generations will regard set theory as a disease from which one has recovered. " - Henri Poincare Random set theory was independently conceived by D.G. Kendall and G. Matheron in connection with stochastic geometry. It was however G.
Generalising classical concepts of probability theory, the investigation of operator (semi)-stable laws as possible limit distributions of operator-normalized sums of i.i.d. random variable on finite-dimensional vector space started in 1969. Currently, this theory is still in progress and promises interesting applications. Parallel to this, similar stability concepts for probabilities on groups were developed during recent decades. It turns out that the existence of suitable limit distributions has a strong impact on the structure of both the normalizing automorphisms and the underlying group. Indeed, investigations in limit laws led to contractable groups and - at least within the class of connected groups - to homogeneous groups, in particular to groups that are topologically isomorphic to a vector space. Moreover, it has been shown that (semi)-stable measures on groups have a vector space counterpart and vice versa. The purpose of this book is to describe the structure of limit laws and the limit behaviour of normalized i.i.d. random variables on groups and on finite-dimensional vector spaces from a common point of view. This will also shed a new light on the classical situation. Chapter 1 provides an introduction to stability problems on vector spaces. Chapter II is concerned with parallel investigations for homogeneous groups and in Chapter III the situation beyond homogeneous Lie groups is treated. Throughout, emphasis is laid on the description of features common to the group- and vector space situation. Chapter I can be understood by graduate students with some background knowledge in infinite divisibility. Readers of Chapters II and III are assumed to be familiar with basic techniques from probability theory on locally compact groups.
The aim of this graduate textbook is to provide a comprehensive advanced course in the theory of statistics covering those topics in estimation, testing, and large sample theory which a graduate student might typically need to learn as preparation for work on a Ph.D. An important strength of this book is that it provides a mathematically rigorous and even-handed account of both Classical and Bayesian inference in order to give readers a broad perspective. For example, the "uniformly most powerful" approach to testing is contrasted with available decision-theoretic approaches.
Over the last fifteen years fractal geometry has established itself as a substantial mathematical theory in its own right. The interplay between fractal geometry, analysis and stochastics has highly influenced recent developments in mathematical modeling of complicated structures. This process has been forced by problems in these areas related to applications in statistical physics, biomathematics and finance. This book is a collection of survey articles covering many of the most recent developments, like Schramm-Loewner evolution, fractal scaling limits, exceptional sets for percolation, and heat kernels on fractals. The authors were the keynote speakers at the conference "Fractal Geometry and Stochastics IV" at Greifswald in September 2008.
Provides step-by-step tutorials with clinically relevant examples and data sets to allow the readers to be more interactive with the topics discussed within Provides a relatable context to the examples provided within the text which helps make the topic more easily understood and manageable, thereby making the book popular more accessible to student readers Includes case studies to demonstrate how the statistical test was used to answer a clinically relevant research question
This book is a rigorous but practical presentation of the techniques of uncertainty quantification, with applications in R and Python. This volume includes mathematical arguments at the level necessary to make the presentation rigorous and the assumptions clearly established, while maintaining a focus on practical applications of uncertainty quantification methods. Practical aspects of applied probability are also discussed, making the content accessible to students. The introduction of R and Python allows the reader to solve more complex problems involving a more significant number of variables. Users will be able to use examples laid out in the text to solve medium-sized problems. The list of topics covered in this volume includes linear and nonlinear programming, Lagrange multipliers (for sensitivity), multi-objective optimization, game theory, as well as linear algebraic equations, and probability and statistics. Blending theoretical rigor and practical applications, this volume will be of interest to professionals, researchers, graduate and undergraduate students interested in the use of uncertainty quantification techniques within the framework of operations research and mathematical programming, for applications in management and planning.
Primary Audience for the Book * Specialists in numerical computations who are interested in algorithms with automatic result verification. * Engineers, scientists, and practitioners who desire results with automatic verification and who would therefore benefit from the experience of suc cessful applications. * Students in applied mathematics and computer science who want to learn these methods. Goal Of the Book This book contains surveys of applications of interval computations, i. e. , appli cations of numerical methods with automatic result verification, that were pre sented at an international workshop on the subject in EI Paso, Texas, February 23-25, 1995. The purpose of this book is to disseminate detailed and surveyed information about existing and potential applications of this new growing field. Brief Description of the Papers At the most fundamental level, interval arithmetic operations work with sets: The result of a single arithmetic operation is the set of all possible results as the operands range over the domain. For example, [0. 9,1. 1] + [2. 9,3. 1] = [3. 8,4. 2], where [3. 8,4. 2] = {x + ylx E [0. 9,1. 1] and y E [3. 8,4. 2]}. The power of interval arithmetic comes from the fact that (i) the elementary operations and standard functions can be computed for intervals with formulas and subroutines; and (ii) directed roundings can be used, so that the images of these operations (e. g.
This book is mainly based on the Cramir--Chernoff renowned theorem, which deals with the 'rough' logarithmic asymptotics of the distribution of sums of independent, identically distributed random variables. The authors approach primarily the extensions of this theory to dependent, and in particular, nonmarkovian cases on function spaces. Recurrent algorithms of identification and adaptive control form the main examples behind the large deviation problems in this volume. The first part of the book exploits some ideas and concepts of the martingale approach, especially the concept of the stochastic exponential. The second part of the book covers Freindlin's approach, based on the Frobenius-type theorems for positive operators, which prove to be effective for the cases in consideration.
This book gives a self-contained introduction to the dynamic martingale approach to marked point processes (MPP). Based on the notion of a compensator, this approach gives a versatile tool for analyzing and describing the stochastic properties of an MPP. In particular, the authors discuss the relationship of an MPP to its compensator and particular classes of MPP are studied in great detail. The theory is applied to study properties of dependent marking and thinning, to prove results on absolute continuity of point process distributions, to establish sufficient conditions for stochastic ordering between point and jump processes, and to solve the filtering problem for certain classes of MPPs.
Many recent advances in modelling within the applied sciences and engineering have focused on the increasing importance of sensitivity analyses. For a given physical, financial or environmental model, increased emphasis is now placed on assessing the consequences of changes in model outputs that result from small changes or errors in both the hypotheses and parameters. The approach proposed in this book is entirely new and features two main characteristics. Even when extremely small, errors possess biases and variances. The methods presented here are able, thanks to a specific differential calculus, to provide information about the correlation between errors in different parameters of the model, as well as information about the biases introduced by non-linearity. The approach makes use of very powerful mathematical tools (Dirichlet forms), which allow one to deal with errors in infinite dimensional spaces, such as spaces of functions or stochastic processes. The method is therefore applicable to non-elementary models along the lines of those encountered in modern physics and finance. This text has been drawn from presentations of research done over the past ten years and that is still ongoing. The work was presented in conjunction with a course taught jointly at the Universities of Paris 1 and Paris 6. The book is intended for students, researchers and engineers with good knowledge in probability theory.
Over the past decade, many major advances have been made in the field of graph colouring via the probabilistic method. This monograph provides an accessible and unified treatment of these results, using tools such as the Lovasz Local Lemma and Talagrand's concentration inequality.The topics covered include: Kahn's proofs that the Goldberg-Seymour and List Colouring Conjectures hold asymptotically; a proof that for some absolute constant C, every graph of maximum degree Delta has a Delta+C total colouring; Johansson's proof that a triangle free graph has a O(Delta over log Delta) colouring; algorithmic variants of the Local Lemma which permit the efficient construction of many optimal and near-optimal colourings.This begins with a gentle introduction to the probabilistic method and will be useful to researchers and graduate students in graph theory, discrete mathematics, theoretical computer science and probability.
Bayesian nonparametrics has grown tremendously in the last three decades, especially in the last few years. This book is the first systematic treatment of Bayesian nonparametric methods and the theory behind them. While the book is of special interest to Bayesians, it will also appeal to statisticians in general because Bayesian nonparametrics offers a whole continuous spectrum of robust alternatives to purely parametric and purely nonparametric methods of classical statistics. The book is primarily aimed at graduate students and can be used as the text for a graduate course in Bayesian nonparametrics. Though the emphasis of the book is on nonparametrics, there is a substantial chapter on asymptotics of classical Bayesian parametric models. Jayanta Ghosh has been Director and Jawaharlal Nehru Professor at the Indian Statistical Institute and President of the International Statistical Institute. He is currently professor of statistics at Purdue University. He has been editor of Sankhya and served on the editorial boards of several journals including the Annals of Statistics. Apart from Bayesian analysis, his interests include asymptotics, stochastic modeling, high dimensional model selection, reliability and survival analysis and bioinformatics. R.V. Ramamoorthi is professor at the Department of Statistics and Probability at Michigan State University. He has published papers in the areas of sufficiency invariance, comparison of experiments, nonparametric survival analysis and Bayesian analysis. In addition to Bayesian nonparametrics, he is currently interested in Bayesian networks and graphical models. He is on the editorial board of Sankhya.
-Describes the basic ideas underlying each concept and model. -Includes R, SAS, SPSS and Stata programming codes for all the examples -Features significantly expanded Chapters 4, 5, and 8 (Chapters 4-6, and 9 in the second edition. -Expands discussion for subtle issues in longitudinal and clustered data analysis such as time varying covariates and comparison of generalized linear mixed-effect models with GEE.
One of the main difficulties of applying an evolutionary algorithm
(or, as a matter of fact, any heuristic method) to a given problem
is to decide on an appropriate set of parameter values. Typically
these are specified before the algorithm is run and include
population size, selection rate, operator probabilities, not to
mention the representation and the operators themselves. This book
gives the reader a solid perspective on the different approaches
that have been proposed to automate control of these parameters as
well as understanding their interactions. The book covers a broad
area of evolutionary computation, including genetic algorithms,
evolution strategies, genetic programming, estimation of
distribution algorithms, and also discusses the issues of specific
parameters used in parallel implementations, multi-objective
evolutionary algorithms, and practical consideration for real-world
applications. It is a recommended read for researchers and
practitioners of evolutionary computation and heuristic
methods.
This focuses on the developing field of building probability models with the power of symbolic algebra systems. The book combines the uses of symbolic algebra with probabilistic/stochastic application and highlights the applications in a variety of contexts. The research explored in each chapter is unified by the use of A Probability Programming Language (APPL) to achieve the modeling objectives. APPL, as a research tool, enables a probabilist or statistician the ability to explore new ideas, methods, and models. Furthermore, as an open-source language, it sets the foundation for future algorithms to augment the original code. Computational Probability Applications is comprised of fifteen chapters, each presenting a specific application of computational probability using the APPL modeling and computer language. The chapter topics include using inverse gamma as a survival distribution, linear approximations of probability density functions, and also moment-ratio diagrams for univariate distributions. These works highlight interesting examples, often done by undergraduate students and graduate students that can serve as templates for future work. In addition, this book should appeal to researchers and practitioners in a range of fields including probability, statistics, engineering, finance, neuroscience, and economics.
Geometric Data Analysis (GDA) is the name suggested by P. Suppes (Stanford University) to designate the approach to Multivariate Statistics initiated by BenzA(c)cri as Correspondence Analysis, an approach that has become more and more used and appreciated over the years. This book presents the full formalization of GDA in terms of linear algebra - the most original and far-reaching consequential feature of the approach - and shows also how to integrate the standard statistical tools such as Analysis of Variance, including Bayesian methods. Chapter 9, Research Case Studies, is nearly a book in itself; it presents the methodology in action on three extensive applications, one for medicine, one from political science, and one from education (data borrowed from the Stanford computer-based Educational Program for Gifted Youth ). Thus the readership of the book concerns both mathematicians interested in the applications of mathematics, and researchers willing to master an exceptionally powerful approach of statistical data analysis.
This book offers an accessible introduction to random walk and diffusion models at a level consistent with the typical background of students in the life sciences. In recent decades these models have become widely used in areas far beyond their traditional origins in physics, for example, in studies of animal behavior, ecology, sociology, sports science, population genetics, public health applications, and human decision making. Developing the main formal concepts, the book provides detailed and intuitive step-by-step explanations, and moves smoothly from simple to more complex models. Finally, in the last chapter, some successful and original applications of random walk and diffusion models in the life and behavioral sciences are illustrated in detail. The treatment of basic techniques and models is consolidated and extended throughout by a set of carefully chosen exercises. |
You may like...
Statistics for Business and Economics…
Paul Newbold, William Carlson, …
R2,178
Discovery Miles 21 780
Biostatistics for the Biological and…
Mario Triola, Marc Triola, …
Paperback
R2,175
Discovery Miles 21 750
Statistics For Business And Economics
David Anderson, James Cochran, …
Paperback
(1)
R2,342 Discovery Miles 23 420
Mathematical Statistics with…
William Mendenhall, Dennis Wackerly, …
Paperback
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
|