![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Probability & statistics
This second edition of G. Winkler's successful book on random field approaches to image analysis, related Markov Chain Monte Carlo methods, and statistical inference with emphasis on Bayesian image analysis concentrates more on general principles and models and less on details of concrete applications. Addressed to students and scientists from mathematics, statistics, physics, engineering, and computer science, it will serve as an introduction to the mathematical aspects rather than a survey. Basically no prior knowledge of mathematics or statistics is required.The second edition is in many parts completely rewritten and improved, and most figures are new. The topics of exact sampling and global optimization of likelihood functions have been added. This second edition comes with a CD-ROM by F. Friedrich,containing a host of (live) illustrations for each chapter. In an interactive environment, readers can perform their own experiments to consolidate the subject.
This contributed volume convenes a rich selection of works with a focus on innovative mathematical methods with applications in real-world, industrial problems. Studies included in this book are all motivated by a relevant industrial challenge, and demonstrate that mathematics for industry can be extremely rewarding, leading to new mathematical methods and sometimes even to entirely new fields within mathematics. The book is organized into two parts: Computational Sciences and Engineering, and Data Analysis and Finance. In every chapter, readers will find a brief description of why such work fits into this volume; an explanation on which industrial challenges have been instrumental for their inspiration; and which methods have been developed as a result. All these contribute to a greater unity of the text, benefiting not only practitioners and professionals seeking information on novel techniques but also graduate students in applied mathematics, engineering, and related fields.
The intention of this collection agrees with the purposes of the homonymous mini-symposium (MS) at ICIAM-2019, which were to overview the essentials of geometric calculus (GC) formalism, to report on state-of-the-art applications showcasing its advantages and to explore the bearing of GC in novel approaches to deep learning. The first three contributions, which correspond to lectures at the MS, offer perspectives on recent advances in the application GC in the areas of robotics, molecular geometry, and medical imaging. The next three, especially invited, hone the expressiveness of GC in orientation measurements under different metrics, the treatment of contact elements, and the investigation of efficient computational methodologies. The last two, which also correspond to lectures at the MS, deal with two aspects of deep learning: a presentation of a concrete quaternionic convolutional neural network layer for image classification that features contrast invariance and a general overview of automatic learning aimed at steering the development of neural networks whose units process elements of a suitable algebra, such as a geometric algebra. The book fits, broadly speaking, within the realm of mathematical engineering, and consequently, it is intended for a wide spectrum of research profiles. In particular, it should bring inspiration and guidance to those looking for materials and problems that bridge GC with applications of great current interest, including the auspicious field of GC-based deep neural networks.
A self-contained and coherent account of probabilistic techniques, covering: distance measures, kernel rules, nearest neighbour rules, Vapnik-Chervonenkis theory, parametric classification, and feature extraction. Each chapter concludes with problems and exercises to further the readers understanding. Both research workers and graduate students will benefit from this wide-ranging and up-to-date account of a fast- moving field.
Recent Developments in Infinite-Dimensional Analysis and Quantum Probability is dedicated to Professor Takeyuki Hida on the occasion of his 70th birthday. The book is more than a collection of articles. In fact, in it the reader will find a consistent editorial work, devoted to attempting to obtain a unitary picture from the different contributions and to give a comprehensive account of important recent developments in contemporary white noise analysis and some of its applications. For this reason, not only the latest results, but also motivations, explanations and connections with previous work have been included. The wealth of applications, from number theory to signal processing, from optimal filtering to information theory, from the statistics of stationary flows to quantum cable equations, show the power of white noise analysis as a tool. Beyond these, the authors emphasize its connections with practically all branches of contemporary probability, including stochastic geometry, the structure theory of stationary Gaussian processes, Neumann boundary value problems, and large deviations.
This book describes concepts and tools needed for water resources management, including methods for modeling, simulation, optimization, big data analysis, data mining, remote sensing, geographical information system, game theory, conflict resolution, System dynamics, agent-based models, multiobjective, multicriteria, and multiattribute decision making and risk and uncertainty analysis, for better and sustainable management of water resources and consumption, thus mitigating the present and future global water shortage crisis. It presents the applications of these tools through case studies which demonstrate its benefits of proper management of water resources systems. This book acts as a reference for students, professors, industrial practitioners, and stakeholders in the field of water resources and hydrology.
The principal focus here is on autoregressive moving average models and analogous random fields, with probabilistic and statistical questions also being discussed. The book contrasts Gaussian models with noncausal or noninvertible (nonminimum phase) non-Gaussian models and deals with problems of prediction and estimation. New results for nonminimum phase non-Gaussian processes are exposited and open questions are noted. Intended as a text for gradutes in statistics, mathematics, engineering, the natural sciences and economics, the only recommendation is an initial background in probability theory and statistics. Notes on background, history and open problems are given at the end of the book.
In this thesis, the first measurement of the running of the top quark mass is presented. This is a fundamental quantum effect that had never been studied before. Any deviation from the expected behaviour can be interpreted as a hint of the presence of physics beyond the Standard Model. All relevant aspects of the analysis are extensively described and documented. This thesis also describes a simultaneous measurement of the inclusive top quark-antiquark production cross section and the top quark mass in the simulation. The measured cross section is also used to precisely determine the values of the top quark mass and the strong coupling constant by comparing to state-of-the-art theoretical predictions. All the theoretical and experimental aspects relevant to the results presented in this thesis are discussed in the initial chapters in a concise but complete way, which makes the material accessible to a wider audience.
A Problem Solving Approach Now available with Macmillan's Achieve, Introductory Statistics helps students develop the fundamental lifelong skill of solving problems and interpreting solutions in real-world terms. One of our goals was to make this problem-solving approach accessible and easy to apply in many situations. We certainly want students to appreciate the beauty of statistics and connections to so many other disciplines. However, it is even more important for students to be able to apply problem-solving skills to a wide range of academic and career pursuits, including business, science and technology, and education. Achieve for Introductory Statistics connects the problem-solving approach and real-world examples in the book to rich digital resources that foster further understanding and application of statistics. Assets in Achieve support learning before, during, and after class for students, while providing instructors with class performance analytics in an easy-to-use interface.
This book is the third edition of a successful textbook for upper-undergraduate and early graduate students, which offers a solid foundation in probability theory and statistics and their application to physical sciences, engineering, biomedical sciences and related disciplines. It provides broad coverage ranging from conventional textbook content of probability theory, random variables, and their statistics, regression, and parameter estimation, to modern methods including Monte-Carlo Markov chains, resampling methods and low-count statistics. In addition to minor corrections and adjusting structure of the content, particular features in this new edition include: Python codes and machine-readable data for all examples, classic experiments, and exercises, which are now more accessible to students and instructors New chapters on low-count statistics including the Poisson-based Cash statistic for regression in the low-count regime, and on contingency tables and diagnostic testing. An additional example of classic experiments based on testing data for SARS-COV-2 to demonstrate practical applications of the described statistical methods. This edition inherits the main pedagogical method of earlier versions-a theory-then-application approach-where emphasis is placed first on a sound understanding of the underlying theory of a topic, which becomes the basis for an efficient and practical application of the materials. Basic calculus is used in some of the derivations, and no previous background in probability and statistics is required. The book includes many numerical tables of data as well as exercises and examples to aid the readers' understanding of the topic.
Ecological research is becoming increasingly quantitative, yet students often opt out of courses in mathematics and statistics, unwittingly limiting their ability to carry out research in the future. This textbook provides a practical introduction to quantitative ecology for students and practitioners who have realised that they need this opportunity. The text is addressed to readers who haven't used mathematics since school, who were perhaps more confused than enlightened by their undergraduate lectures in statistics and who have never used a computer for much more than word processing and data entry. From this starting point, it slowly but surely instils an understanding of mathematics, statistics and programming, sufficient for initiating research in ecology. The book's practical value is enhanced by extensive use of biological examples and the computer language R for graphics, programming and data analysis. Key Features: Provides a complete introduction to mathematics statistics and computing for ecologists.Presents a wealth of ecological examples demonstrating the applied relevance of abstract mathematical concepts, showing how a little technique can go a long way in answering interesting ecological questions.Covers elementary topics, including the rules of algebra, logarithms, geometry, calculus, descriptive statistics, probability, hypothesis testing and linear regression.Explores more advanced topics including fractals, non-linear dynamical systems, likelihood and Bayesian estimation, generalised linear, mixed and additive models, and multivariate statistics.R boxes provide step-by-step recipes for implementing the graphical and numerical techniques outlined in each section. "How to be a Quantitative Ecologist" provides a comprehensive introduction to mathematics, statistics and computing and is the ideal textbook for late undergraduate and postgraduate courses in environmental biology. "With a book like this, there is no excuse for people to be
afraid of maths, and to be ignorant of what it can do."
Queues for service of one kind or another arise in many different fields of activity. In recent years a considerable amount of research has been conducted into the properties of simplified mathematical models of such queueing systems. Our objects in the present mono graph are threefold. First we have tried, especially in Chapter I, to give an account of the general ideas that are useful in describing and thinking about queueing systems. Secondly, we have illustrated by examples some of the mathematical techniques that are useful for the study of these systems. Finally, we have given some explicit mathematical results which may be useful in practical investigations. A recent bibliography gave some 600 papers on queueing and allied subjects. Clearly we cannot, in the modest limits of the present work, cover more than a small proportion of the huge amount of material available. However, some results that we have not had space to discuss in detail have been given in outline in the form of exercises."
This book presents a modern perspective on the modelling, analysis, and synthesis ideas behind convex-optimisation-based control of nonlinear systems: it embeds them in models with convex structures. Analysis and Synthesis of Nonlinear Control Systems begins with an introduction to the topic and a discussion of the problems to be solved. It then explores modelling via convex structures, including quasi-linear parameter-varying, Takagi-Sugeno models, and linear fractional transformation structures. The authors cover stability analysis, addressing Lyapunov functions and the stability of polynomial models, as well as the performance and robustness of the models. With detailed examples, simulations, and programming code, this book will be useful to instructors, researchers, and graduate students interested in nonlinear control systems.
This innovative textbook presents material for a course on modern statistics that incorporates Python as a pedagogical and practical resource. Drawing on many years of teaching and conducting research in various applied and industrial settings, the authors have carefully tailored the text to provide an ideal balance of theory and practical applications. Numerous examples and case studies are incorporated throughout, and comprehensive Python applications are illustrated in detail. A custom Python package is available for download, allowing students to reproduce these examples and explore others. The first chapters of the text focus on analyzing variability, probability models, and distribution functions. Next, the authors introduce statistical inference and bootstrapping, and variability in several dimensions and regression models. The text then goes on to cover sampling for estimation of finite population quantities and time series analysis and prediction, concluding with two chapters on modern data analytic methods. Each chapter includes exercises, data sets, and applications to supplement learning. Modern Statistics: A Computer-Based Approach with Python is intended for a one- or two-semester advanced undergraduate or graduate course. Because of the foundational nature of the text, it can be combined with any program requiring data analysis in its curriculum, such as courses on data science, industrial statistics, physical and social sciences, and engineering. Researchers, practitioners, and data scientists will also find it to be a useful resource with the numerous applications and case studies that are included. A second, closely related textbook is titled Industrial Statistics: A Computer-Based Approach with Python. It covers topics such as statistical process control, including multivariate methods, the design of experiments, including computer experiments and reliability methods, including Bayesian reliability. These texts can be used independently or for consecutive courses. The mistat Python package can be accessed at https://gedeck.github.io/mistat-code-solutions/ModernStatistics/ "In this book on Modern Statistics, the last two chapters on modern analytic methods contain what is very popular at the moment, especially in Machine Learning, such as classifiers, clustering methods and text analytics. But I also appreciate the previous chapters since I believe that people using machine learning methods should be aware that they rely heavily on statistical ones. I very much appreciate the many worked out cases, based on the longstanding experience of the authors. They are very useful to better understand, and then apply, the methods presented in the book. The use of Python corresponds to the best programming experience nowadays. For all these reasons, I think the book has also a brilliant and impactful future and I commend the authors for that." Professor Fabrizio RuggeriResearch Director at the National Research Council, ItalyPresident of the International Society for Business and Industrial Statistics (ISBIS)Editor-in-Chief of Applied Stochastic Models in Business and Industry (ASMBI)
This monograph studies a series of mathematical models of the evolution of a population under mutation and selection. Its starting point is the quasispecies equation, a general non-linear equation which describes the mutation-selection equilibrium in Manfred Eigen's famous quasispecies model. A detailed analysis of this equation is given under the assumptions of finite genotype space, sharp peak landscape, and class-dependent fitness landscapes. Different probabilistic representation formulae are derived for its solution, involving classical combinatorial quantities like Stirling and Euler numbers. It is shown how quasispecies and error threshold phenomena emerge in finite population models, and full mathematical proofs are provided in the case of the Wright-Fisher model. Along the way, exact formulas are obtained for the quasispecies distribution in the long chain regime, on the sharp peak landscape and on class-dependent fitness landscapes. Finally, several other classical population models are analyzed, with a focus on their dynamical behavior and their links to the quasispecies equation. This book will be of interest to mathematicians and theoretical ecologists/biologists working with finite population models.
Probability and Mechanics of Ship Collision and Grounding provides simplified analytical procedures for ship collision and grounding assessments, including probabilistic methods, an estimation of the energy released during collisions, and a prediction of the extent of damage on involved structures. An additional chapter is dedicated to current finite element analysis techniques that are used for estimating structural damage during ship collisions. The book encapsulates reliable and fast analysis methods for collision and grounding assessment, presenting tactics that have been extensively validated with experimental and numerical results. In addition, all described analysis methods include realistic calculation examples to provide confidence in their use.
Labor omnia vincit improbus. VIRGIL, Georgica I, 144-145. In the first part of his Theoria combinationis observationum erroribus min- imis obnoxiae, published in 1821, Carl Friedrich Gauss [Gau80, p.10] deduces a Chebyshev-type inequality for a probability density function, when it only has the property that its value always decreases, or at least does l not increase, if the absolute value of x increases . One may therefore conjecture that Gauss is one of the first scientists to use the property of 'single-humpedness' of a probability density function in a meaningful probabilistic context. More than seventy years later, zoologist W.F.R. Weldon was faced with 'double- humpedness'. Indeed, discussing peculiarities of a population of Naples crabs, possi- bly connected to natural selection, he writes to Karl Pearson (E.S. Pearson [Pea78, p.328]): Out of the mouths of babes and sucklings hath He perfected praise! In the last few evenings I have wrestled with a double humped curve, and have overthrown it. Enclosed is the diagram...If you scoff at this, I shall never forgive you. Not only did Pearson not scoff at this bimodal probability density function, he examined it and succeeded in decomposing it into two 'single-humped curves' in his first statistical memoir (Pearson [Pea94]).
The material given provides basic statistical techniques required by students of engineering, computer science and business studies. The concepts are put in a systematic way and exercises are given at the end of each chapter. This book has been written with the purpose of providing the basic statistical techniques required by students of Engineering, Computer Science, Business Studies and Medicine for the statistical work in their field, which involves Probability Distributions of a Single Random Variable. It also aims to provide a sound basis for students of Mathematics, Statistics, Actuarial Science, Financial Engineering, Biostatistics, Operational Research, Physical Science and Research Methodology, who intend to pursue further study in Probability and Statistics at graduate level.
This book discusses quantum theory as the theory of random (Brownian) motion of small particles (electrons etc.) under external forces. Implying that the Schroedinger equation is a complex-valued evolution equation and the Schroedinger function is a complex-valued evolution function, important applications are given. Readers will learn about new mathematical methods (theory of stochastic processes) in solving problems of quantum phenomena. Readers will also learn how to handle stochastic processes in analyzing physical phenomena.
This work contains an up-to-date coverage of the last 20 years' advances in Bayesian inference in econometrics, with an emphasis on dynamic models. It shows how to treat Bayesian inference in non linear models, by integrating the useful developments of numerical integration techniques based on simulations (such as Markov Chain Monte Carlo methods), and the long available analytical results of Bayesian inference for linear regression models. It thus covers a broad range of rather recent models for economic time series, such as non linear models, autoregressive conditional heteroskedastic regressions, and cointegrated vector autoregressive models. It contains also an extensive chapter on unit root inference from the Bayesian viewpoint. Several examples illustrate the methods. This book is intended for econometrics and statistics postgraduates, professors and researchers in economics departments, business schools, statistics departments, or any research centre in the same fields, especially econometricians.
This monograph addresses two quite different topics, in the belief that each can shed light on the other. Firstly, it lays the foundation for a particular view of the bootstrap. Secondly, it gives an account of Edgeworth expansion. Chapter 1 is about the bootstrap, witih almost no mention of Edgeworth expansion; Chapter 2 is about Edgeworth expansion, with scarcely a word about the bootstrap; and Chapters 3 and 4 bring these two themes together, using Edgeworth expansion to explore and develop the properites of the bootstrap. The book is aimed a a graduate level audience who has some exposure to the methods of theoretical statistics. However, technical details are delayed until the last chapter (entitled "Details of Mathematical Rogour"), and so a mathematically able reader without knowledge of the rigorous theory of probability will have no trouble understanding the first four-fifths of the book. The book simultaneously fills two gaps in the literature; it provides a very readable graduate level account of the theory of Edgeworth expansion, and it gives a detailed introduction to the theory of bootstrap methods.
A novel exposition of the analysis of variance and regression. The key feature here is that these tools are viewed in their natural mathematical setting - the geometry of finite dimensions. This is because geometry clarifies the basic statistics and unifies the many aspects of analysing variance and regression.
This book analyses the models for major risks related to flight safety in the aviation sector and presents risk estimation methods through examples of several known aviation enterprises. The book provides a comprehensive content for professionals engaged in the development of flight safety regulatory framework as well as in the design and operation of ground-based or on-board flight support radio electronic systems. The book is also useful for senior students and postgraduates in aviation specialties, especially those related to air traffic management.
This textbook and guide focuses on methodologies for bias analysis in epidemiology and public health, not only providing updates to the first edition but also further developing methods and adding new advanced methods. As computational power available to analysts has improved and epidemiologic problems have become more advanced, missing data, Bayes, and empirical methods have become more commonly used. This new edition features updated examples throughout and adds coverage addressing: Measurement error pertaining to continuous and polytomous variables Methods surrounding person-time (rate) data Bias analysis using missing data, empirical (likelihood), and Bayes methods A unique feature of this revision is its section on best practices for implementing, presenting, and interpreting bias analyses. Pedagogically, the text guides students and professionals through the planning stages of bias analysis, including the design of validation studies and the collection of validity data from other sources. Three chapters present methods for corrections to address selection bias, uncontrolled confounding, and measurement errors, and subsequent sections extend these methods to probabilistic bias analysis, missing data methods, likelihood-based approaches, Bayesian methods, and best practices. |
You may like...
Statistics for Management and Economics
Gerald Keller, Nicoleta Gaciu
Paperback
Integrated Population Biology and…
Arni S.R. Srinivasa Rao, C.R. Rao
Hardcover
R6,219
Discovery Miles 62 190
Advances in Quantum Monte Carlo
Shigenori Tanaka, Stuart M. Rothstein, …
Hardcover
R5,469
Discovery Miles 54 690
Fundamentals of Social Research Methods
Claire Bless, Craig Higson-Smith, …
Paperback
|