![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Probability & statistics
This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical comparison with other integration methods in random space is made. Part III covers spatial white noise. Here the authors discuss numerical methods for nonlinear elliptic equations as well as other equations with additive noise. Numerical methods for SPDEs with multiplicative noise are also discussed using the Wiener chaos expansion method. In addition, some SPDEs driven by non-Gaussian white noise are discussed and some model reduction methods (based on Wick-Malliavin calculus) are presented for generalized polynomial chaos expansion methods. Powerful techniques are provided for solving stochastic partial differential equations. This book can be considered as self-contained. Necessary background knowledge is presented in the appendices. Basic knowledge of probability theory and stochastic calculus is presented in Appendix A. In Appendix B some semi-analytical methods for SPDEs are presented. In Appendix C an introduction to Gauss quadrature is provided. In Appendix D, all the conclusions which are needed for proofs are presented, and in Appendix E a method to compute the convergence rate empirically is included. In addition, the authors provide a thorough review of the topics, both theoretical and computational exercises in the book with practical discussion of the effectiveness of the methods. Supporting Matlab files are made available to help illustrate some of the concepts further. Bibliographic notes are included at the end of each chapter. This book serves as a reference for graduate students and researchers in the mathematical sciences who would like to understand state-of-the-art numerical methods for stochastic partial differential equations with white noise.
The present book is based on a course developed as partofthe large NSF-funded GatewayCoalitionInitiativeinEngineeringEducationwhichincludedCaseWest ern Reserve University, Columbia University, Cooper Union, Drexel University, Florida International University, New Jersey Institute ofTechnology, Ohio State University, University ofPennsylvania, Polytechnic University, and Universityof South Carolina. The Coalition aimed to restructure the engineering curriculum by incorporating the latest technological innovations and tried to attract more and betterstudents to engineering and science. Draftsofthis textbookhave been used since 1992instatisticscoursestaughtatCWRU, IndianaUniversity, Bloomington, and at the universities in Gottingen, Germany, and Grenoble, France. Another purpose of this project was to develop a courseware that would take advantage ofthe Electronic Learning Environment created by CWRUnet-the all fiber-optic Case Western Reserve University computer network, and its ability to let students run Mathematica experiments and projects in their dormitory rooms, and interactpaperlessly with the instructor. Theoretically, onecould try togothroughthisbook withoutdoing Mathematica experimentsonthecomputer, butitwouldbelikeplayingChopin's Piano Concerto in E-minor, or Pink Floyd's The Wall, on an accordion. One would get an idea ofwhatthe tune was without everexperiencing the full richness andpowerofthe entire composition, and the whole ambience would be miscued."
Missing data have long plagued those conducting applied research in the social, behavioral, and health sciences. Good missing data analysis solutions are available, but practical information about implementation of these solutions has been lacking. The objective of "Missing Data: Analysis and Design" is to enable investigators who are non-statisticians to implement modern missing data procedures properly in their research, and reap the benefits in terms of improved accuracy and statistical power. "Missing Data: Analysis and Design" contains essential information for both beginners and advanced readers. For researchers with limited missing data analysis experience, this book offers an easy-to-read introduction to the theoretical underpinnings of analysis of missing data; provides clear, step-by-step instructions for performing state-of-the-art multiple imputation analyses; and offers practical advice, based on over 20 years' experience, for avoiding and troubleshooting problems. For more advanced readers, unique discussions of attrition, non-Monte-Carlo techniques for simulations involving missing data, evaluation of the benefits of auxiliary variables, and highly cost-effective planned missing data designs are provided. The author lays out missing data theory in a plain English style that is accessible and precise. Most analysis described in the book are conducted using the well-known statistical software packages SAS and SPSS, supplemented by Norm 2.03 and associated Java-based automation utilities. A related web site contains free downloads of the supplementary software, as well as sample empirical data sets and a variety of practical exercises described in the book to enhance and reinforce the reader s learning experience. "Missing Data: Analysis and Design" and its web site work together to enable beginners to gain confidence in their ability to conduct missing data analysis, and more advanced readers to expand their skill set. "
To function in modern society complex data must be absorbed and
understood at a breakneck pace. The most efficient way to do this
is through data-based graphics. This book is an exploration and
celebration of graphical methods of data presentation.
This book offers a detailed review of perturbed random walks, perpetuities, and random processes with immigration. Being of major importance in modern probability theory, both theoretical and applied, these objects have been used to model various phenomena in the natural sciences as well as in insurance and finance. The book also presents the many significant results and efficient techniques and methods that have been worked out in the last decade. The first chapter is devoted to perturbed random walks and discusses their asymptotic behavior and various functionals pertaining to them, including supremum and first-passage time. The second chapter examines perpetuities, presenting results on continuity of their distributions and the existence of moments, as well as weak convergence of divergent perpetuities. Focusing on random processes with immigration, the third chapter investigates the existence of moments, describes long-time behavior and discusses limit theorems, both with and without scaling. Chapters four and five address branching random walks and the Bernoulli sieve, respectively, and their connection to the results of the previous chapters. With many motivating examples, this book appeals to both theoretical and applied probabilists.
This book explores different statistical quality technologies including recent advances and applications. Statistical process control, acceptance sample plans and reliability assessment are some of the essential statistical techniques in quality technologies to ensure high quality products and to reduce consumer and producer risks. Numerous statistical techniques and methodologies for quality control and improvement have been developed in recent years to help resolve current product quality issues in today's fast changing environment. Featuring contributions from top experts in the field, this book covers three major topics: statistical process control, acceptance sampling plans, and reliability testing and designs. The topics covered in the book are timely and have a high potential impact and influence to academics, scholars, students and professionals in statistics, engineering, manufacturing and health.
The Introduction to Bayesian Statistics (2nd Edition) presents Bayes theorem, the estimation of unknown parameters, the determination of confidence regions and the derivation of tests of hypotheses for the unknown parameters, in a manner that is simple, intuitive and easy to comprehend. The methods are applied to linear models, in models for a robust estimation, for prediction and filtering and in models for estimating variance components and covariance components. Regularization of inverse problems and pattern recognition are also covered while Bayesian networks serve for reaching decisions in systems with uncertainties. If analytical solutions cannot be derived, numerical algorithms are presented such as the Monte Carlo integration and Markov Chain Monte Carlo methods."
The subject of these two volumes is non-linear filtering (prediction and smoothing) theory and its application to the problem of optimal estimation, control with incomplete data, information theory, and sequential testing of hypothesis. The book is not only addressed to mathematicians but should also serve the interests of other scientists who apply probabilistic and statistical methods in their work. The theory of martingales presented in the book has an independent interest in connection with problems from financial mathematics. In the second edition, the authors have made numerous corrections, updating every chapter, adding two new subsections devoted to the Kalman filter under wrong initial conditions, as well as a new chapter devoted to asymptotically optimal filtering under diffusion approximation. Moreover, in each chapter a comment is added about the progress of recent years.
'Et moi, "'J si j'avait su comment en revcnir, One seMcc mathematics has rendered the je n'y semis point aile.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shclf next to the dusty canister labelled 'discarded non sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
The book introduces basic risk concepts and then goes on to discuss risk management and analysis processes and steps. The main emphasis is on methods that fulfill the requirements of one or several risk management steps. The focus is on risk analysis methods including statistical-empirical analyses, probabilistic and parametrized models, engineering approaches and simulative methods, e.g. for fragment and blast propagation or hazard density computation. Risk management is essential for improving all resilience management steps: preparation, prevention, protection, response and recovery. The methods investigate types of event and scenario, as well as frequency, exposure, avoidance, hazard propagation, damage and risks of events. Further methods are presented for context assessment, risk visualization, communication, comparison and assessment as well as selecting mitigation measures. The processes and methods are demonstrated using detailed results and overviews of security research projects, in particular in the applications domains transport, aviation, airport security, explosive threats and urban security and safety. Topics include: sufficient control of emerging and novel hazards and risks, occupational safety, identification of minimum (functional) safety requirements, engineering methods for countering malevolent or terrorist events, security research challenges, interdisciplinary approaches to risk control and management, risk-based change and improvement management, and support of rational decision-making. The book addresses advanced bachelor students, master and doctoral students as well as scientists, researchers and developers in academia, industry, small and medium enterprises working in the emerging field of security and safety engineering.
A clear, comprehensive treatment of the subject, Environmental Statistics with S-PLUS is an ideal resource for environmental scientists, engineers, regulators, and students, even those with only a limited knowledge of statistics. It provides insight into what to think about before you collect environmental data, how to collect it, and how to make sense of it after you have it. This book addresses the vast array of methods used today by scientists, researchers, and regulators.
This volume considers various methods for constructing cubature and quadrature formulas of arbitrary degree. These formulas are intended to approximate the calculation of multiple and conventional integrals over a bounded domain of integration. The latter is assumed to have a piecewise-smooth boundary and to be arbitrary in other aspects. Particular emphasis is placed on invariant cubature formulas and those for a cube, a simplex, and other polyhedra. Here, the techniques of functional analysis and partial differential equations are applied to the classical problem of numerical integration, to establish many important and deep analytical properties of cubature formulas. The prerequisites of the theory of many-dimensional discrete function spaces and the theory of finite differences are concisely presented. Special attention is paid to constructing and studying the optimal cubature formulas in Sobolev spaces. As an asymptotically optimal sequence of cubature formulas, a many-dimensional abstraction of the Gregory quadrature is indicated. Audience: This book is intended for researchers having a basic knowledge of functional analysis who are interested in the applications of modern theoretical methods to numerical mathematics.
This volume consists of papers inspired by the special session on pseudo-differential operators at the 10th ISAAC Congress held at the University of Macau, August 3-8, 2015 and the mini-symposium on pseudo-differential operators in industries and technologies at the 8th ICIAM held at the National Convention Center in Beijing, August 10-14, 2015. The twelve papers included present cutting-edge trends in pseudo-differential operators and applications from the perspectives of Lie groups (Chapters 1-2), geometry (Chapters 3-5) and applications (Chapters 6-12). Many contributions cover applications in probability, differential equations and time-frequency analysis. A focus on the synergies of pseudo-differential operators with applications, especially real-life applications, enhances understanding of the analysis and the usefulness of these operators.
Useful in physics, economics, psychology, and other fields, random matrices play an important role in the study of multivariate statistical methods. Until now, however, most of the material on random matrices could only be found scattered in various statistical journals. Matrix Variate Distributions gathers and systematically presents most of the recent developments in continuous matrix variate distribution theory and includes new results.
Applied Linear Regression for Business Analytics with R introduces regression analysis to business students using the R programming language with a focus on illustrating and solving real-time, topical problems. Specifically, this book presents modern and relevant case studies from the business world, along with clear and concise explanations of the theory, intuition, hands-on examples, and the coding required to employ regression modeling. Each chapter includes the mathematical formulation and details of regression analysis and provides in-depth practical analysis using the R programming language.
How do preprocessing steps such as tokenization, stemming, and removing stop words affect predictive models? Build beginning-to-end workflows for predictive modeling using text as features Compare traditional machine learning methods and deep learning methods for text data
This book offers a comprehensive reference guide to fuzzy statistics and fuzzy decision-making techniques. It provides readers with all the necessary tools for making statistical inference in the case of incomplete information or insufficient data, where classical statistics cannot be applied. The respective chapters, written by prominent researchers, explain a wealth of both basic and advanced concepts including: fuzzy probability distributions, fuzzy frequency distributions, fuzzy Bayesian inference, fuzzy mean, mode and median, fuzzy dispersion, fuzzy p-value, and many others. To foster a better understanding, all the chapters include relevant numerical examples or case studies. Taken together, they form an excellent reference guide for researchers, lecturers and postgraduate students pursuing research on fuzzy statistics. Moreover, by extending all the main aspects of classical statistical decision-making to its fuzzy counterpart, the book presents a dynamic snapshot of the field that is expected to stimulate new directions, ideas and developments.
'Stats to Go' is a user-friendly guide for hospitality, leisure and tourism students who need to learn statistics and statistical techniques. 'Stats to go' is an ideal companion to hospitality, leisure and tourism studies as the breadth of coverage supports all taught numerical aspects of these types of course. Examples from hospitality, leisure and tourism organizations: * licensed premises* fast food outlets* hotels * theme parksand their environments are used to illustrate key issues of the text.The area of quantitative methods is one which many students find unapproachable or daunting. With the use of a clear learning structure, and a user friendly, non-theoretical approach, Buglear has created a text which students and lecturers alike will find indispensable.
The applications of stochastic methods in design by reliability include the better utilisation of hydrological information. With statistical methods one can evaluate the safety component of hydraulic systems. Based on these, extra safety features can be added to ensure the reliable performance of an hydraulic system. One such example is the design of a dam, which features a number of random variables, each with a very distinct and quite different probability function. This book reports on developments in stochastic hydraulics across a wide range of applications, including river hydraulics, sediment transportation, waves and coastal processes, hydrology, hydraulic works and structure, and environmental hydraulics.
The Probability Theory of Patterns and Runs has had a long and distinguished history, starting with the work of de Moivre in the 18th century and that of von Mises in the early 1920's, and continuing with the renewal-theoretic results in Feller's classic text An Introduction to Probability Theory and its Applications, Volume 1. It is worthwhile to note, in particular, that de Moivre, in the third edition of The Doctrine of Chances (1756, reprinted by Chelsea in 1967, pp. 254-259), provides the generating function for the waiting time for the appearance of k consecutive successes. During the 1940's, statisticians such as Mood, Wolfowitz, David and Mosteller studied the distribution theory, both exact and asymptotic, of run-related statistics, thereby laying the foundation for several exact run tests. In the last two decades or so, the theory has seen an impressive re-emergence, primarily due to important developments in Molecular Biology, but also due to related research thrusts in Reliability Theory, Distribution Theory, Combinatorics, and Statistics.
This text presents notions and ideas at the foundations of a statistical treatment of risks. The focus is on statistical applications within the field of engineering risk and safety analysis. Coverage includes Bayesian methods. Such knowledge facilitates the understanding of the influence of random phenomena and gives a deeper understanding of the role of probability in risk analysis. The text is written for students who have studied elementary undergraduate courses in engineering mathematics, perhaps including a minor course in statistics. This book differs from typical textbooks in its verbal approach to many explanations and examples.
Most applications generate large datasets, like social networking and social influence programs, smart cities applications, smart house environments, Cloud applications, public web sites, scientific experiments and simulations, data warehouse, monitoring platforms, and e-government services. Data grows rapidly, since applications produce continuously increasing volumes of both unstructured and structured data. Large-scale interconnected systems aim to aggregate and efficiently exploit the power of widely distributed resources. In this context, major solutions for scalability, mobility, reliability, fault tolerance and security are required to achieve high performance and to create a smart environment. The impact on data processing, transfer and storage is the need to re-evaluate the approaches and solutions to better answer the user needs. A variety of solutions for specific applications and platforms exist so a thorough and systematic analysis of existing solutions for data science, data analytics, methods and algorithms used in Big Data processing and storage environments is significant in designing and implementing a smart environment. Fundamental issues pertaining to smart environments (smart cities, ambient assisted leaving, smart houses, green houses, cyber physical systems, etc.) are reviewed. Most of the current efforts still do not adequately address the heterogeneity of different distributed systems, the interoperability between them, and the systems resilience. This book will primarily encompass practical approaches that promote research in all aspects of data processing, data analytics, data processing in different type of systems: Cluster Computing, Grid Computing, Peer-to-Peer, Cloud/Edge/Fog Computing, all involving elements of heterogeneity, having a large variety of tools and software to manage them. The main role of resource management techniques in this domain is to create the suitable frameworks for development of applications and deployment in smart environments, with respect to high performance. The book focuses on topics covering algorithms, architectures, management models, high performance computing techniques and large-scale distributed systems.
Whether you are a statistician, engineer, or businessperson, you need statistics. You want to be able to easily reference tables, find formulas, and know how to use them so you can extract information from data without getting bogged down by advanced statistical methods. Your goal is to determine the appropriate statistical procedures and interpret the results. Standard Probability and Statistics: Tables and Formulae provides the tools you need to do just that. |
You may like...
Machine Learning and Flow Assurance in…
Bhajan Lal, Cornelius Borecho Bavoh, …
Hardcover
R4,238
Discovery Miles 42 380
Turbulence in Porous Media - Modeling…
Marcelo J. S. de Lemos
Hardcover
R3,974
Discovery Miles 39 740
Management Accounting - Retrospect and…
Al Bhimani, Michael Bromwich
Paperback
R1,231
Discovery Miles 12 310
|