![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Probability & statistics
A clear, comprehensive treatment of the subject, Environmental Statistics with S-PLUS is an ideal resource for environmental scientists, engineers, regulators, and students, even those with only a limited knowledge of statistics. It provides insight into what to think about before you collect environmental data, how to collect it, and how to make sense of it after you have it. This book addresses the vast array of methods used today by scientists, researchers, and regulators.
The mathematical and statistical tools needed in the rapidly growing quantitative finance field With the rapid growth in quantitative finance, practitioners must achieve a high level of proficiency in math and statistics. Mathematical Methods and Statistical Tools for Finance, part of the Frank J. Fabozzi Series, has been created with this in mind. Designed to provide the tools needed to apply finance theory to real world financial markets, this book offers a wealth of insights and guidance in practical applications. It contains applications that are broader in scope from what is covered in a typical book on mathematical techniques. Most books focus almost exclusively on derivatives pricing, the applications in this book cover not only derivatives and asset pricing but also risk management including credit risk management and portfolio management. * Includes an overview of the essential math and statistical skills required to succeed in quantitative finance * Offers the basic mathematical concepts that apply to the field of quantitative finance, from sets and distances to functions and variables * The book also includes information on calculus, matrix algebra, differential equations, stochastic integrals, and much more * Written by Sergio Focardi, one of the world's leading authors in high-level finance Drawing on the author's perspectives as a practitioner and academic, each chapter of this book offers a solid foundation in the mathematical tools and techniques need to succeed in today's dynamic world of finance.
Modern computer-intensive statistical methods play a key role in solving many problems across a wide range of scientific disciplines. Like its bestselling predecessors, the fourth edition of Randomization, Bootstrap and Monte Carlo Methods in Biology illustrates a large number of statistical methods with an emphasis on biological applications. The focus is now on the use of randomization, bootstrapping, and Monte Carlo methods in constructing confidence intervals and doing tests of significance. The text provides comprehensive coverage of computer-intensive applications, with data sets available online. Features Presents an overview of computer-intensive statistical methods and applications in biology Covers a wide range of methods including bootstrap, Monte Carlo, ANOVA, regression, and Bayesian methods Makes it easy for biologists, researchers, and students to understand the methods used Provides information about computer programs and packages to implement calculations, particularly using R code Includes a large number of real examples from a range of biological disciplines Written in an accessible style, with minimal coverage of theoretical details, this book provides an excellent introduction to computer-intensive statistical methods for biological researchers. It can be used as a course text for graduate students, as well as a reference for researchers from a range of disciplines. The detailed, worked examples of real applications will enable practitioners to apply the methods to their own biological data.
This book offers a comprehensive reference guide to fuzzy statistics and fuzzy decision-making techniques. It provides readers with all the necessary tools for making statistical inference in the case of incomplete information or insufficient data, where classical statistics cannot be applied. The respective chapters, written by prominent researchers, explain a wealth of both basic and advanced concepts including: fuzzy probability distributions, fuzzy frequency distributions, fuzzy Bayesian inference, fuzzy mean, mode and median, fuzzy dispersion, fuzzy p-value, and many others. To foster a better understanding, all the chapters include relevant numerical examples or case studies. Taken together, they form an excellent reference guide for researchers, lecturers and postgraduate students pursuing research on fuzzy statistics. Moreover, by extending all the main aspects of classical statistical decision-making to its fuzzy counterpart, the book presents a dynamic snapshot of the field that is expected to stimulate new directions, ideas and developments.
To function in modern society complex data must be absorbed and
understood at a breakneck pace. The most efficient way to do this
is through data-based graphics. This book is an exploration and
celebration of graphical methods of data presentation.
This volume describes how to conceptualize, perform, and critique traditional generalized linear models (GLMs) from a Bayesian perspective and how to use modern computational methods to summarize inferences using simulation. Introducing dynamic modeling for GLMs and containing over 1000 references and equations, Generalized Linear Models considers parametric and semiparametric approaches to overdispersed GLMs, presents methods of analyzing correlated binary data using latent variables. It also proposes a semiparametric method to model link functions for binary response data, and identifies areas of important future research and new applications of GLMs.
The Probability Theory of Patterns and Runs has had a long and distinguished history, starting with the work of de Moivre in the 18th century and that of von Mises in the early 1920's, and continuing with the renewal-theoretic results in Feller's classic text An Introduction to Probability Theory and its Applications, Volume 1. It is worthwhile to note, in particular, that de Moivre, in the third edition of The Doctrine of Chances (1756, reprinted by Chelsea in 1967, pp. 254-259), provides the generating function for the waiting time for the appearance of k consecutive successes. During the 1940's, statisticians such as Mood, Wolfowitz, David and Mosteller studied the distribution theory, both exact and asymptotic, of run-related statistics, thereby laying the foundation for several exact run tests. In the last two decades or so, the theory has seen an impressive re-emergence, primarily due to important developments in Molecular Biology, but also due to related research thrusts in Reliability Theory, Distribution Theory, Combinatorics, and Statistics.
'Stats to Go' is a user-friendly guide for hospitality, leisure and tourism students who need to learn statistics and statistical techniques. 'Stats to go' is an ideal companion to hospitality, leisure and tourism studies as the breadth of coverage supports all taught numerical aspects of these types of course. Examples from hospitality, leisure and tourism organizations: * licensed premises* fast food outlets* hotels * theme parksand their environments are used to illustrate key issues of the text.The area of quantitative methods is one which many students find unapproachable or daunting. With the use of a clear learning structure, and a user friendly, non-theoretical approach, Buglear has created a text which students and lecturers alike will find indispensable.
This text presents notions and ideas at the foundations of a statistical treatment of risks. The focus is on statistical applications within the field of engineering risk and safety analysis. Coverage includes Bayesian methods. Such knowledge facilitates the understanding of the influence of random phenomena and gives a deeper understanding of the role of probability in risk analysis. The text is written for students who have studied elementary undergraduate courses in engineering mathematics, perhaps including a minor course in statistics. This book differs from typical textbooks in its verbal approach to many explanations and examples.
Game Theory: A Modeling Approach quickly moves readers through the fundamental ideas of the subject to enable them to engage in creative modeling projects based on game theoretic concepts. The authors match conclusions to real-world scenarios and applications. The text engages students in active learning, group work, in-class discussions and interactive simulations. Each chapter provides foundation pieces or adds more features to help readers build game theoretic models. The chapters include definitions, concepts and illustrative examples. The text will engage and challenge both undergraduate and graduate students. Features: Enables readers to apply game theorty to real-world scenarios Chapters can be used for core course materials or independent stuides Exercises, included at the end of the chapters, follow the order of the sections in the text Select answers and solutions are found at the end of the book Solutions manual for instructors is available from the authors
The intention of this book is to explain to a mathematician having no previous knowledge in this domain, what "noncommutative probability" is. So the first decision was not to concentrate on a special topic. For different people, the starting points of such a domain may be different. In what concerns this question, different variants are not discussed. One such variant comes from Quantum Physics. The motivations in this book are mainly mathematical; more precisely, they correspond to the desire of developing a probability theory in a new set-up and obtaining results analogous to the classical ones for the newly defined mathematical objects. Also different mathematical foundations of this domain were proposed. This book concentrates on one variant, which may be described as "von Neumann algebras." This is true also for the last chapter, if one looks at its ultimate aim. In the references there are some papers corresponding to other variants; we mention Gudder, S.P. &al (1978). Segal, I.E. (1965) also discusses "basic ideas."
This Festschrift is dedicated to Goetz Trenkler on the occasion of his 65th birthday. As can be seen from the long list of contributions, Goetz has had and still has an enormous range of interests, and colleagues to share these interests with. He is a leading expert in linear models with a particular focus on matrix algebra in its relation to statistics. He has published in almost all major statistics and matrix theory journals. His research activities also include other areas (like nonparametrics, statistics and sports, combination of forecasts and magic squares, just to mention afew). Goetz Trenkler was born in Dresden in 1943. After his school years in East G- many and West-Berlin, he obtained a Diploma in Mathematics from Free University of Berlin (1970), where he also discovered his interest in Mathematical Statistics. In 1973, he completed his Ph.D. with a thesis titled: On a distance-generating fu- tion of probability measures. He then moved on to the University of Hannover to become Lecturer and to write a habilitation-thesis (submitted 1979) on alternatives to the Ordinary Least Squares estimator in the Linear Regression Model, a topic that would become his predominant ?eld of research in the years to come.
The applications of stochastic methods in design by reliability include the better utilisation of hydrological information. With statistical methods one can evaluate the safety component of hydraulic systems. Based on these, extra safety features can be added to ensure the reliable performance of an hydraulic system. One such example is the design of a dam, which features a number of random variables, each with a very distinct and quite different probability function. This book reports on developments in stochastic hydraulics across a wide range of applications, including river hydraulics, sediment transportation, waves and coastal processes, hydrology, hydraulic works and structure, and environmental hydraulics.
Whether you are a statistician, engineer, or businessperson, you need statistics. You want to be able to easily reference tables, find formulas, and know how to use them so you can extract information from data without getting bogged down by advanced statistical methods. Your goal is to determine the appropriate statistical procedures and interpret the results. Standard Probability and Statistics: Tables and Formulae provides the tools you need to do just that.
Useful in physics, economics, psychology, and other fields, random matrices play an important role in the study of multivariate statistical methods. Until now, however, most of the material on random matrices could only be found scattered in various statistical journals. Matrix Variate Distributions gathers and systematically presents most of the recent developments in continuous matrix variate distribution theory and includes new results.
A systematic, innovative introduction to the field of network analysis, Network Psychometrics with R: A Guide for Behavioral and Social Scientists provides a comprehensive overview of and guide to both the theoretical foundations of network psychometrics as well as modelling techniques developed from this perspective. Written by pioneers in the field, this textbook showcases cutting-edge methods in an easily accessible format, accompanied by problem sets and code. After working through this book, readers will be able to understand the theoretical foundations behind network modelling, infer network topology, and estimate network parameters from different sources of data. This book features an introduction on the statistical programming language R that guides readers on how to analyse network structures and their stability using R. While Network Psychometrics with R is written in the context of social and behavioral science, the methods introduced in this book are widely applicable to data sets from related fields of study. Additionally, while the text is written in a non-technical manner, technical content is highlighted in textboxes for the interested reader. Network Psychometrics with R is ideal for instructors and students of undergraduate and graduate level courses and workshops in the field of network psychometrics as well as established researchers looking to master new methods. This book is accompanied by a companion website with resources for both students and lecturers.
Exam Board: MEI Level: A-level Subject: Mathematics First Teaching: September 2017 First Exam: June 2018 An OCR endorsed textbook Help students to develop their knowledge and apply their reasoning to mathematical problems with textbooks that draw on the well-known MEI (Mathematics in Education and Industry) series, updated and tailored to the 2017 OCR (MEI) specification and developed by subject experts and MEI. - Ensure targeted development of reasoning and problem-solving skills with plenty of practice questions and structured exercises that build mathematical skills and techniques. - Build connections between topics, using real-world contexts to help develop mathematical modelling skills, thus providing a fuller and more coherent understanding of mathematical concepts. - Help students to overcome misconceptions and develop insight into problem solving with annotated worked examples. - Develop understanding and measure progress with graduated exercises that support students at every stage of their learning. - Provide clear paths of progression that combine pure and applied maths into a coherent whole.
This book provides a comprehensive treatment of linear mixed models for continuous longitudinal data. Next to model formulation, this edition puts major emphasis on exploratory data analysis for all aspects of the model, such as the marginal model, subject-specific profiles, and residual covariance structure. Further, model diagnostics and missing data receive extensive treatment. Sensitivity analysis for incomplete data is given a prominent place. Several variations to the conventional linear mixed model are discussed (a heterogeity model, condional linear mid models). This book will be of interest to applied statisticians and biomedical researchers in industry, public health organizations, contract research organizations, and academia. The book is explanatory rather than mathematically rigorous. Most analyses were done with the MIXED procedure of the SAS software package, and many of its features are clearly elucidated. How3ever, some other commercially available packages are discussed as well. Great care has been taken in presenting the data analyses in a software-independent fashion. Geert Verbeke is Assistant Professor at the Biostistical Centre of the Katholieke Universiteit Leuven in Belgium. He received the B.S. degree in mathematics (1989) from the Katholieke Universiteit Leuven, the M.S. in biostatistics (1992) from the Limburgs Universitair Centrum, and earned a Ph.D. in biostatistics (1995) from the Katholieke Universiteit Leuven. Dr. Verbeke wrote his dissertation, as well as a number of methodological articles, on various aspects of linear mixed models for longitudinal data analysis. He has held visiting positions at the Gerontology Research Center and the Johns Hopkins University. Geert Molenberghs is Assistant Professor of Biostatistics at the Limburgs Universitair Centrum in Belgium. He received the B.S. degree in mathematics (1988) and a Ph.D. in biostatistics (1993) from the Universiteit Antwerpen. Dr. Molenberghs published methodological work on the analysis of non-response in clinical and epidemiological studies. He serves as an associate editor for Biometrics, Applied Statistics, and Biostatistics, and is an officer of the Belgian Statistical Society. He has held visiting positions at the Harvard School of Public Health.
This book focuses on how statistical reasoning works and on
training programs that can exploit people's natural cognitive
capabilities to improve their statistical reasoning. Training
programs that take into account findings from evolutionary
psychology and instructional theory are shown to have substantially
larger effects that are more stable over time than previous
training regimens. The theoretical implications are traced in a
neural network model of human performance on statistical reasoning
problems. This book apppeals to judgment and decision making
researchers and other cognitive scientists, as well as to teachers
of statistics and probabilistic reasoning.
Prediction of a random field based on observations of the random field at some set of locations arises in mining, hydrology, atmospheric sciences, and geography. Kriging, a prediction scheme defined as any prediction scheme that minimizes mean squared prediction error among some class of predictors under a particular model for the field, is commonly used in all these areas of prediction. This book summarizes past work and describes new approaches to thinking about kriging.
This book offers an accessible introduction to random walk and diffusion models at a level consistent with the typical background of students in the life sciences. In recent decades these models have become widely used in areas far beyond their traditional origins in physics, for example, in studies of animal behavior, ecology, sociology, sports science, population genetics, public health applications, and human decision making. Developing the main formal concepts, the book provides detailed and intuitive step-by-step explanations, and moves smoothly from simple to more complex models. Finally, in the last chapter, some successful and original applications of random walk and diffusion models in the life and behavioral sciences are illustrated in detail. The treatment of basic techniques and models is consolidated and extended throughout by a set of carefully chosen exercises.
With the advent of computers, very large datasets have become routine. Standard statistical methods don't have the power or flexibility to analyse these efficiently, and extract the required knowledge. An alternative approach is to summarize a large dataset in such a way that the resulting summary dataset is of a manageable size and yet retains as much of the knowledge in the original dataset as possible. One consequence of this is that the data may no longer be formatted as single values, but be represented by lists, intervals, distributions, etc. The summarized data have their own internal structure, which must be taken into account in any analysis. This text presents a unified account of symbolic data, how they arise, and how they are structured. The reader is introduced to symbolic analytic methods described in the consistent statistical framework required to carry out such a summary and subsequent analysis. Presents a detailed overview of the methods and applications of symbolic data analysis. Includes numerous real examples, taken from a variety of application areas, ranging from health and social sciences, to economics and computing. Features exercises at the end of each chapter, enabling the reader to develop their understanding of the theory. Provides a supplementary website featuring links to download the SODAS software developed exclusively for symbolic data analysis, data sets, and further material. Primarily aimed at statisticians and data analysts, "Symbolic Data Analysis" is also ideal for scientists working on problems involving large volumes of data from a range of disciplines, including computer science, health and the social sciences. There is also much ofuse to graduate students of statistical data analysis courses.
"Contains over 2500 equations and exhaustively covers not only nonparametrics but also parametric, semiparametric, frequentist, Bayesian, bootstrap, adaptive, univariate, and multivariate statistical methods, as well as practical uses of Markov chain models."
Survival analysis is a highly active area of research with applications spanning the physical, engineering, biological, and social sciences. In addition to statisticians and biostatisticians, researchers in this area include epidemiologists, reliability engineers, demographers and economists. The economists survival analysis by the name of duration analysis and the analysis of transition data. We attempted to bring together leading researchers, with a common interest in developing methodology in survival analysis, at the NATO Advanced Research Workshop. The research works collected in this volume are based on the presentations at the Workshop. Analysis of survival experiments is complicated by issues of censoring, where only partial observation of an individual's life length is available and left truncation, where individuals enter the study group if their life lengths exceed a given threshold time. Application of the theory of counting processes to survival analysis, as developed by the Scandinavian School, has allowed for substantial advances in the procedures for analyzing such experiments. The increased use of computer intensive solutions to inference problems in survival analysis~ in both the classical and Bayesian settings, is also evident throughout the volume. Several areas of research have received special attention in the volume.
Though the Genome Project will eventually result in the sequencing of the human genome, as well as the genomes of several other organisms, there will still be a need for good statistics for family studies of complex diseases. The papers in this volume are contributions by some of the leading researchers in the field to the current topics in statistical genetics. One section deals with DNA sequence matching and issues related to forensics, while another deals with statistical problems of modeling phylogenies and inferential difficulties related to the complex tree structures produced, as well as the method of coalescence. |
You may like...
The Philosophy of Creativity - New…
Elliot Samuel Paul, Scott Barry Kaufman
Hardcover
R1,904
Discovery Miles 19 040
High Performance Computational Methods…
Tieng K. Yap, Ophir Frieder, …
Hardcover
R4,134
Discovery Miles 41 340
|