Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Probability & statistics
This book provides a comprehensive and concrete illustration of time series analysis focusing on the state-space model, which has recently attracted increasing attention in a broad range of fields. The major feature of the book lies in its consistent Bayesian treatment regarding whole combinations of batch and sequential solutions for linear Gaussian and general state-space models: MCMC and Kalman/particle filter. The reader is given insight on flexible modeling in modern time series analysis. The main topics of the book deal with the state-space model, covering extensively, from introductory and exploratory methods to the latest advanced topics such as real-time structural change detection. Additionally, a practical exercise using R/Stan based on real data promotes understanding and enhances the reader's analytical capability.
How do preprocessing steps such as tokenization, stemming, and removing stop words affect predictive models? Build beginning-to-end workflows for predictive modeling using text as features Compare traditional machine learning methods and deep learning methods for text data
On May 27-31, 1985, a series of symposia was held at The University of Western Ontario, London, Canada, to celebrate the 70th birthday of Pro fessor V. M. Joshi. These symposia were chosen to reflect Professor Joshi's research interests as well as areas of expertise in statistical science among faculty in the Departments of Statistical and Actuarial Sciences, Economics, Epidemiology and Biostatistics, and Philosophy. From these symposia, the six volumes which comprise the "Joshi Festschrift" have arisen. The 117 articles in this work reflect the broad interests and high quality of research of those who attended our conference. We would like to thank alI of the contributors for their superb cooperation in helping us to complete this project. Our deepest gratitude must go to the three people who have spent so much of their time in the past year typing these volumes: Jackie BeU, Lise Constant, and Sandy Tamowski. This work has been printed from "camera ready" copy produced by our Vax 785 computer and QMS Lasergraphix printers, using the text processing software TEX. At the initiation of this project, we were neophytes in the use of this system. Thank you, J ackie, Lise, and Sandy, for having the persistence and dedication needed to complete this undertaking."
This book discusses recent developments and the latest research in statistics and its applications, primarily in agriculture and industry, survey sampling and biostatistics, gathering articles on a wide variety of topics. Written by leading academics, scientists, researchers and scholars from around the globe to mark the platinum jubilee of the Department of Statistics, University of Calcutta in 2016, the book is a valuable resource for statisticians, aspiring researchers and professionals across educational levels and disciplines.
This book presents the first part of a planned two-volume series devoted to a systematic exposition of some recent developments in the theory of discrete-time Markov control processes (MCPs). Interest is mainly confined to MCPs with Borel state and control (or action) spaces, and possibly unbounded costs and noncompact control constraint sets. MCPs are a class of stochastic control problems, also known as Markov decision processes, controlled Markov processes, or stochastic dynamic pro grams; sometimes, particularly when the state space is a countable set, they are also called Markov decision (or controlled Markov) chains. Regardless of the name used, MCPs appear in many fields, for example, engineering, economics, operations research, statistics, renewable and nonrenewable re source management, (control of) epidemics, etc. However, most of the lit erature (say, at least 90%) is concentrated on MCPs for which (a) the state space is a countable set, and/or (b) the costs-per-stage are bounded, and/or (c) the control constraint sets are compact. But curiously enough, the most widely used control model in engineering and economics--namely the LQ (Linear system/Quadratic cost) model-satisfies none of these conditions. Moreover, when dealing with "partially observable" systems) a standard approach is to transform them into equivalent "completely observable" sys tems in a larger state space (in fact, a space of probability measures), which is uncountable even if the original state process is finite-valued."
Studies of local and global phenomena generate descriptions which
require statistical analysis. In this text, H. Jean Thiebaux
presents a succinct yet comprehensive review of the fundamentals of
statistics as they pertain to studies in oceanic and atmospheric
sciences. The text includes an accompanying disk with compatible
Minitab sample data. Together, this volume and the included data
provide insights into the basics of statistical inference, data
analysis, and distributional models of variability. Oceanographers,
meteorologists, marine biologists, and other environmental
scientists will find this book of great value as a statistical tool
for their continuing studies.
"Mathematics of Uncertainty" provides the basic ideas and foundations of uncertainty, covering the fields of mathematics in which uncertainty, variability, imprecision and fuzziness of data are of importance. This introductory book describes the basic ideas of the mathematical fields of uncertainty from simple interpolation to wavelets, from error propagation to fuzzy sets and neural networks. The book presents the treatment of problems of interpolation and approximation, as well as observation fuzziness which can essentially influence the preciseness and reliability of statements on functional relationships. The notions of randomness and probability are examined as a model for the variability of observation and measurement results. Besides these basic ideas the book also presents methods of qualitative data analysis such as cluster analysis and classification, and of evaluation of functional relationships such as regression analysis and quantitative fuzzy data analysis.
Intuitive Probability and Random Processes using MATLABA(R) is an introduction to probability and random processes that merges theory with practice. Based on the authora (TM)s belief that only "hands-on" experience with the material can promote intuitive understanding, the approach is to motivate the need for theory using MATLAB examples, followed by theory and analysis, and finally descriptions of "real-world" examples to acquaint the reader with a wide variety of applications. The latter is intended to answer the usual question "Why do we have to study this?" Other salient features are: *heavy reliance on computer simulation for illustration and student exercises *the incorporation of MATLAB programs and code segments *discussion of discrete random variables followed by continuous random variables to minimize confusion *summary sections at the beginning of each chapter *in-line equation explanations *warnings on common errors and pitfalls *over 750 problems designed to help the reader assimilate and extend the concepts Intuitive Probability and Random Processes using MATLABA(R) is intended for undergraduate and first-year graduate students in engineering. The practicing engineer as well as others having the appropriate mathematical background will also benefit from this book. About the Author Steven M. Kay is a Professor of Electrical Engineering at the University of Rhode Island and a leading expert in signal processing. He has received the Education Award "for outstanding contributions in education and in writing scholarly books and texts..." from the IEEE Signal Processing society and has been listed as among the 250 mostcited researchers in the world in engineering.
On May 27-31, 1985, a series of symposia was held at The University of Western Ontario, London, Canada, to celebrate the 70th birthday of Pro fessor V. M. Joshi. These symposia were chosen to reflect Professor Joshi's research interests as well as areas of expertise in statistical science among faculty in the Departments of Statistical and Actuarial Sciences, Economics, Epidemiology and Biostatistics, and Philosophy. From these symposia, the six volumes which comprise the "Joshi Festschrift" have arisen. The 117 articles in this work reflect the broad interests and high quality of research of those who attended our conference. We would like to thank all of the contributors for their superb cooperation in helping us to complete this project. Our deepest gratitude must go to the three people who have spent so much of their time in the past year typing these volumes: Jackie Bell, Lise Constant, and Sandy Tarnowski. This work has been printed from "camera ready" copy produced by our Vax 785 computer and QMS Lasergraphix printers, using the text processing software TEX. At the initiation of this project, we were neophytes in the use of this system. Thank you, Jackie, Lise, and Sandy, for having the persistence and dedication needed to complete this undertaking."
This book of problems has been designed to accompany an undergraduate course in probability. The only prerequisite is basic algebra and calculus. Each chapter is divided into three parts: Problems, Hints, and Solutions. To make the book self-contained all problem sections include expository material. Definitions and statements of important results are interlaced with relevant problems. The problems have been selected to motivate abstract definitions by concrete examples and to lead in manageable steps towards general results, as well as to provide exercises based on the issues and techniques introduced in each chapter. The book is intended as a challenge to involve students as active participants in the course.
Intended for both researchers and practitioners, this book will be a valuable resource for studying and applying recent robust statistical methods. It contains up-to-date research results in the theory of robust statistics Treats computational aspects and algorithms and shows interesting and new applications.
This book employs a computable general equilibrium (CGE) model - a widely used economic model which uses actual data to provide economic analysis and policy assessment - and applies it to economic data on Singapore's tourism industry. The authors set out to demonstrate how a novice modeller can acquire the necessary skills and knowledge to successfully apply general equilibrium models to tourism studies. The chapters explain how to build a computable general equilibrium model for tourism, how to conduct simulation and, most importantly, how to analyse modelling results. This applied study acts as a modelling book at both introductory and intermediate levels, specifically targeting students and researchers who are interested in and wish to learn computable general equilibrium modelling. The authors offer insightful analysis of Singapore's tourism industry and provide both students and researchers with a guide on how to apply general equilibrium models to actual economic data and draw accurate conclusions.
A Levy process is a continuous-time analogue of a random walk, and as such, is at the cradle of modern theories of stochastic processes. Martingales, Markov processes, and diffusions are extensions and generalizations of these processes. In the past, representatives of the Levy class were considered most useful for applications to either Brownian motion or the Poisson process. Nowadays the need for modeling jumps, bursts, extremes and other irregular behavior of phenomena in nature and society has led to a renaissance of the theory of general Levy processes. Researchers and practitioners in fields as diverse as physics, meteorology, statistics, insurance, and finance have rediscovered the simplicity of Levy processes and their enormous flexibility in modeling tails, dependence and path behavior. This volume, with an excellent introductory preface, describes the state-of-the-art of this rapidly evolving subject with special emphasis on the non-Brownian world. Leading experts present surveys of recent developments, or focus on some most promising applications. Despite its special character, every topic is aimed at the non- specialist, keen on learning about the new exciting face of a rather aged class of processes. An extensive bibliography at the end of each article makes this an invaluable comprehensive reference text. For the researcher and graduate student, every article contains open problems and points out directions for futurearch. The accessible nature of the work makes this an ideal introductory text for graduate seminars in applied probability, stochastic processes, physics, finance, and telecommunications, and a unique guide to the world of Levy processes. "
In the theory of random processes the term 'ergodicity' has a wide variety of meanings. In the theory of stationary processes ergodicity is often identified with metric transitivity. In the theory of Markov processes, the word ergodic is applied to theorems of both the existence of transition probability limits and on the convergence of mean value ratios of these transition probabilities. In addition, there are also 'ergodic theorems' on the convergence of distributions of shifted random processes. In this monograph, the term 'ergodic' is understood in its original sense, i.e. the one it had when it was first adopted by the theory of random processes from statistical mechanics and Boltzmann's theory of gases. In this book, an ergodic theorem refers to any statement about the existence of a mean value with respect to trajectories of a random process taken with respect to time. The author takes the view that problems of the existence of time means, and their equality to phase means, are interesting without any assumptions about the distribution of the random process.
This book is the third revised and updated English edition of the German textbook \Versuchsplanung und Modellwahl" by Helge Toutenburg which was based on more than 15 years experience of lectures on the course \- sign of Experiments" at the University of Munich and interactions with the statisticians from industries and other areas of applied sciences and en- neering. This is a type of resource/ reference book which contains statistical methods used by researchers in applied areas. Because of the diverse ex- ples combined with software demonstrations it is also useful as a textbook in more advanced courses, The applications of design of experiments have seen a signi?cant growth in the last few decades in di?erent areas like industries, pharmaceutical sciences, medical sciences, engineering sciences etc. The second edition of this book received appreciation from academicians, teachers, students and applied statisticians. As a consequence, Springer-Verlag invited Helge Toutenburg to revise it and he invited Shalabh for the third edition of the book. In our experience with students, statisticians from industries and - searchers from other ?elds of experimental sciences, we realized the importance of several topics in the design of experiments which will - crease the utility of this book. Moreover we experienced that these topics are mostly explained only theoretically in most of the available books.
Scan statistics is currently one of the most active and important areas of research in applied probability and statistics, having applications to a wide variety of fields: archaeology, astronomy, bioinformatics, biosurveillance, molecular biology, genetics, computer science, electrical engineering, geography, material sciences, physics, reconnaissance, reliability and quality control, telecommunication, and epidemiology. Filling a gap in the literature, this self-contained volume brings together a collection of selected chapters illustrating the depth and diversity of theory, methods and applications in the area of scan statistics.
These proceedings represent the current state of research on the topics 'boundary theory' and 'spectral and probability theory' of random walks on infinite graphs. They are the result of the two workshops held in Styria (Graz and St. Kathrein am Offenegg, Austria) between June 29th and July 5th, 2009. Many of the participants joined both meetings. Even though the perspectives range from very different fields of mathematics, they all contribute with important results to the same wonderful topic from structure theory, which, by extending a quotation of Laurent Saloff-Coste, could be described by 'exploration of groups by random processes'.
Statistical inferential methods are widely used in the study of various physical, biological, social, and other phenomena. Parametric estimation is one such method. Although there are many books which consider problems of statistical point estimation, this volume is the first to be devoted solely to the problem of unbiased estimation. It contains three chapters dealing, respectively, with the theory of point statistical estimation, techniques for constructing unbiased estimators, and applications of unbiased estimation theory. These chapters are followed by a comprehensive appendix which classifies and lists, in the form of tables, all known results relating to unbiased estimators of parameters for univariate distributions. About one thousand minimum variance unbiased estimators are listed. The volume also contains numerous examples and exercises. This volume will serve as a handbook on point unbiased estimation for researchers whose work involves statistics. It can also be recommended as a supplementary text for graduate students.
The editors draw on a 3-year project that analyzed a Portuguese area in detail, comparing this study with papers from other regions. Applications include the estimation of technical efficiency in agricultural grazing systems (dairy, beef and mixed) and specifically for dairy farms. The conclusions indicate that it is now necessary to help small dairy farms in order to make them more efficient. These results can be compared with the technical efficiency of a sample of Spanish dairy processing firms presented by Magdalena Kapelko and co-authors.
The Handbook is written for academics, researchers, practitioners and advanced graduate students. It has been designed to be read by those new or starting out in the field of spatial analysis as well as by those who are already familiar with the field. The chapters have been written in such a way that readers who are new to the field will gain important overview and insight. At the same time, those readers who are already practitioners in the field will gain through the advanced and/or updated tools and new materials and state-of-the-art developments included. This volume provides an accounting of the diversity of current and emergent approaches, not available elsewhere despite the many excellent journals and te- books that exist. Most of the chapters are original, some few are reprints from the Journal of Geographical Systems, Geographical Analysis, The Review of Regional Studies and Letters of Spatial and Resource Sciences. We let our contributors - velop, from their particular perspective and insights, their own strategies for m- ping the part of terrain for which they were responsible. As the chapters were submitted, we became the first consumers of the project we had initiated. We gained from depth, breadth and distinctiveness of our contributors' insights and, in particular, the presence of links between them.
The aspects of this text which we believe are novel, at least in degree, include: an effort to motivate different sections with practical examples and an empirical orientation; an effort to intersperse several easily motivated examples throughout the book and to maintain some continuity in these examples; and the extensive use of Monte Carlo simulations to demonstrate particular aspects of the problems and estimators being considered. In terms of material being presented, the unique aspects include the first chapter which attempts to address the use of empirical methods in the social sciences, the seventh chapter which considers models with discrete dependent variables and unobserved variables. Clearly these last two topics in particular are quite advanced--more advanced than material that is currently available on the subject. These last two topics are also currently experiencing rapid development and are not adequately described in most other texts.
This guide is for practicing statisticians and data scientists who use IBM SPSS for statistical analysis of big data in business and finance. This is the first of a two-part guide to SPSS for Windows, introducing data entry into SPSS, along with elementary statistical and graphical methods for summarizing and presenting data. Part I also covers the rudiments of hypothesis testing and business forecasting while Part II will present multivariate statistical methods, more advanced forecasting methods, and multivariate methods. IBM SPSS Statistics offers a powerful set of statistical and information analysis systems that run on a wide variety of personal computers. The software is built around routines that have been developed, tested, and widely used for more than 20 years. As such, IBM SPSS Statistics is extensively used in industry, commerce, banking, local and national governments, and education. Just a small subset of users of the package include the major clearing banks, the BBC, British Gas, British Airways, British Telecom, the Consumer Association, Eurotunnel, GSK, TfL, the NHS, Shell, Unilever, and W.H.S. Although the emphasis in this guide is on applications of IBM SPSS Statistics, there is a need for users to be aware of the statistical assumptions and rationales underpinning correct and meaningful application of the techniques available in the package; therefore, such assumptions are discussed, and methods of assessing their validity are described. Also presented is the logic underlying the computation of the more commonly used test statistics in the area of hypothesis testing. Mathematical background is kept to a minimum.
This is the first fundamental book devoted to non-Kolmogorov probability models. It provides a mathematical theory of negative probabilities, with numerous applications to quantum physics, information theory, complexity, biology and psychology. The book also presents an interesting model of cognitive information reality with flows of information probabilities, describing the process of thinking, social, and psychological phenomena.
This timely and synoptic text contains the essentials of queueing networks, from the classical product-form theory to the more recent developments such as diffusion and fluid limits, stochastic comparisons, stability, dynamic scheduling, and optimization. Written by two leading experts in stochastic models and applied probability, the book is based on the authors' lecture notes accumulated over many years of teaching queueing networks. The selection of materials is well-balanced in breadth and depth, making the book an ideal graduate-level text for students in engineering, business, applied mathematics, and probability and statistics. As queueing networks have become widely used as a basic model of many physical systems in a diverse range of fields, from supply chains to communication networks, the book is also a useful reference for researchers and practitioners in industrial engineering, operations research and management, computer systems, telecommunications, and related fields.
This book presents a large variety of extensions of the methods of inclusion and exclusion. Both methods for generating and methods for proof of such inequalities are discussed. The inequalities are utilized for finding asymptotic values and for limit theorems. Applications vary from classical probability estimates to modern extreme value theory and combinatorial counting to random subset selection. Applications are given in prime number theory, growth of digits in different algorithms, and in statistics such as estimates of confidence levels of simultaneous interval estimation. The prerequisites include the basic concepts of probability theory and familiarity with combinatorial arguments. |
You may like...
Statistics for Management and Economics
Gerald Keller, Nicoleta Gaciu
Paperback
Statistics for Business and Economics…
Paul Newbold, William Carlson, …
R2,178
Discovery Miles 21 780
Mathematical Statistics with…
William Mendenhall, Dennis Wackerly, …
Paperback
Statistics For Business And Economics
David Anderson, James Cochran, …
Paperback
(1)
R2,342 Discovery Miles 23 420
Biostatistics for the Biological and…
Mario Triola, Marc Triola, …
Paperback
R2,175
Discovery Miles 21 750
Time Series Analysis - With Applications…
Jonathan D. Cryer, Kung-Sik Chan
Hardcover
R2,549
Discovery Miles 25 490
|