![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Probability & statistics
Continuous-time Markov decision processes (MDPs), also known as controlled Markov chains, are used for modeling decision-making problems that arise in operations research (for instance, inventory, manufacturing, and queueing systems), computer science, communications engineering, control of populations (such as fisheries and epidemics), and management science, among many other fields. This volume provides a unified, systematic, self-contained presentation of recent developments on the theory and applications of continuous-time MDPs. The MDPs in this volume include most of the cases that arise in applications, because they allow unbounded transition and reward/cost rates. Much of the material appears for the first time in book form.
In recent years, the theory has become widely accepted and has been further developed, but a detailed introduction is needed in order to make the material available and accessible to a wide audience. This will be the first book providing such an introduction, covering core theory and recent developments which can be applied to many application areas. All authors of individual chapters are leading researchers on the specific topics, assuring high quality and up-to-date contents. An Introduction to Imprecise Probabilities provides a comprehensive introduction to imprecise probabilities, including theory and applications reflecting the current state if the art. Each chapter is written by experts on the respective topics, including: Sets of desirable gambles; Coherent lower (conditional) previsions; Special cases and links to literature; Decision making; Graphical models; Classification; Reliability and risk assessment; Statistical inference; Structural judgments; Aspects of implementation (including elicitation and computation); Models in finance; Game- theoretic probability; Stochastic processes (including Markov chains); Engineering applications. Essential reading for researchers in academia, research institutes and other organizations, as well as practitioners engaged in areas such as risk analysis and engineering.
After Karl JAreskog's first presentation in 1970, Structural Equation Modelling or SEM has become a main statistical tool in many fields of science. It is the standard approach of factor analytic and causal modelling in such diverse fields as sociology, education, psychology, economics, management and medical sciences. In addition to an extension of its application area, Structural Equation Modelling also features a continual renewal and extension of its theoretical background. The sixteen contributions to this book, written by experts from many countries, present important new developments and interesting applications in Structural Equation Modelling. The book addresses methodologists and statisticians professionally dealing with Structural Equation Modelling to enhance their knowledge of the type of models covered and the technical problems involved in their formulation. In addition, the book offers applied researchers new ideas about the use of Structural Equation Modeling in solving their problems. Finally, methodologists, mathematicians and applied researchers alike are addressed, who simply want to update their knowledge of recent approaches in data analysis and mathematical modelling.
01/07 This title is now available from Walter de Gruyter. Please see www.degruyter.com for more information. Limit theorems for semimartingales form the basis of the martingale approximation approach. The methods of martingale approximation addressed in this book pertain to estimates of the rate of convergence in the central limit theorem and in the invariance principle. Some applications of martingale approximation are illustrated by the analysis of U-statistics, rank statistics, statistics of exchangeable variables and stochastic exponential statistics. Simplified results of stochastic analysis are given for use in investigations of many applied problems, including mathematical statistics, financial mathematics, mathematical biology, industrial mathematics and engineering.
Statistical Inference for Ergodic Diffusion Processes encompasses a wealth of results from over ten years of mathematical literature. It provides a comprehensive overview of existing techniques, and presents - for the first time in book form - many new techniques and approaches. An elementary introduction to the field at the start of the book introduces a class of examples - both non-standard and classical - that reappear as the investigation progresses to illustrate the merits and demerits of the procedures. The statements of the problems are in the spirit of classical mathematical statistics, and special attention is paid to asymptotically efficient procedures. Today, diffusion processes are widely used in applied problems in fields such as physics, mechanics and, in particular, financial mathematics. This book provides a state-of-the-art reference that will prove invaluable to researchers, and graduate and postgraduate students, in areas such as financial mathematics, economics, physics, mechanics and the biomedical sciences.
Asymptotic methods belong to the, perhaps, most romantic area of modern mathematics. They are widely known and have been used in me chanics, physics and other exact sciences for many, many decades. But more than this, asymptotic ideas are found in all branches of human knowledge, indeed in all areas of life. In this broader context they have not and perhaps cannot be fully formalized. However, they are mar velous, they leave room for fantasy, guesses and intuition; they bring us very near to the border of the realm of art. Many books have been written and published about asymptotic meth ods. Most of them presume a mathematically sophisticated reader. The authors here attempt to describe asymptotic methods on a more accessi ble level, hoping to address a wider range of readers. They have avoided the extreme of banishing formulae entirely, as done in some popular science books that attempt to describe mathematical methods with no mathematics. This is impossible (and not wise). Rather, the authors have tried to keep the mathematics at a moderate level. At the same time, using simple examples, they think they have been able to illustrate all the key ideas of asymptotic methods and approaches, to depict in de tail the results of their application to various branches of knowledg- from astronomy, mechanics, and physics to biology, psychology and art. The book is supplemented by several appendices, one of which con tains the profound ideas of R. G."
This book provides a thorough development of the powerful methods of heavy traffic analysis and approximations with applications to a wide variety of stochastic (e.g. queueing and communication) networks, for both controlled and uncontrolled systems. The approximating models are reflected stochastic differential equations. The analytical and numerical methods yield considerable simplifications and insights and good approximations to both path properties and optimal controls under broad conditions on the data and structure. The general theory is developed, with possibly state dependent parameters, and specialized to many different cases of practical interest. Control problems in telecommunications and applications to scheduling, admissions control, polling, and elsewhere are treated. The necessary probability background is reviewed, including a detailed survey of reflected stochastic differential equations, weak convergence theory, methods for characterizing limit processes, and ergodic problems.
As information technologies become increasingly distributed and accessible to larger number of people and as commercial and government organizations are challenged to scale their applications and services to larger market shares, while reducing costs, there is demand for software methodologies and appli- tions to provide the following features: Richer application end-to-end functionality; Reduction of human involvement in the design and deployment of the software; Flexibility of software behaviour; and Reuse and composition of existing software applications and systems in novel or adaptive ways. When designing new distributed software systems, the above broad requi- ments and their translation into implementations are typically addressed by partial complementarities and overlapping technologies and this situation gives rise to significant software engineering challenges. Some of the challenges that may arise are: determining the components that the distributed applications should contain, organizing the application components, and determining the assumptions that one needs to make in order to implement distributed scalable and flexible applications, etc.
This book covers a range of statistical methods useful in the analysis of medical data, from the simple to the sophisticated, and shows how they may be applied using the latest versions of S-PLUS and S-PLUS 6. In each chapter several sets of medical data are explored and analysed using a mixture of graphical and model fitting approaches. At the end of each chapter the S-PLUS script files are listed, enabling readers to reproduce all the analyses and graphics in the chapter. These script files can be downloaded from a web site. The aim of the book is to show how to use S-PLUS as a powerful environment for undertaking a variety of statistical analyses from simple inference to complex model fitting, and for providing informative graphics. All such methods are of increasing importance in handling data from a variety of medical investigations including epidemiological studies and clinical trials. The mix of real data examples and background theory make this book useful for students and researchers alike. For the former, exercises are provided at the end of each chapter to increase their fluency in using the command line language of the S-PLUS software. Professor Brian Everitt is Head of the Department of Biostatistics and Computing at the Institute of Psychiatry in London and Sophia Rabe-Hesketh is a senior lecturer in the same department. Professor Everitt is the author of over 30 books on statistics including two previously co-authored with Dr. Rabe-Hesketh.
In 1978 Edwin T. Jaynes and Myron Tribus initiated a series of workshops to exchange ideas and recent developments in technical aspects and applications of Bayesian probability theory. The first workshop was held at the University of Wyoming in 1981 organized by C.R. Smith and W.T. Grandy. Due to its success, the workshop was held annually during the last 18 years. Over the years, the emphasis of the workshop shifted gradually from fundamental concepts of Bayesian probability theory to increasingly realistic and challenging applications. The 18th international workshop on Maximum Entropy and Bayesian Methods was held in Garching / Munich (Germany) (27-31. July 1998). Opening lectures by G. Larry Bretthorst and by Myron Tribus were dedicated to one of th the pioneers of Bayesian probability theory who died on the 30 of April 1998: Edwin Thompson Jaynes. Jaynes revealed and advocated the correct meaning of 'probability' as the state of knowledge rather than a physical property. This inter pretation allowed him to unravel longstanding mysteries and paradoxes. Bayesian probability theory, "the logic of science" - as E.T. Jaynes called it - provides the framework to make the best possible scientific inference given all available exper imental and theoretical information. We gratefully acknowledge the efforts of Tribus and Bretthorst in commemorating the outstanding contributions of E.T. Jaynes to the development of probability theory."
This is the first book on the subject since its introduction more than fifty years ago, and it can be used as a graduate text or as a reference work. It features all of the key results, many very useful tables, and a large number of research problems. The book will be of interest to those interested in one of the most fascinating areas of discrete mathematics, connected to statistics and coding theory, with applications to computer science and cryptography. It will be useful for anyone who is running experiments, whether in a chemistry lab or a manufacturing plant (trying to make those alloys stronger), or in agricultural or medical research. Sam Hedayat is Professor of Statistics and Senior Scholar in the Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago. Neil J.A. Sloane is with AT&T Bell Labs (now AT&T Labs). John Stufken is Professor Statistics at Iowa State University.
Bayesian Reliability presents modern methods and techniques for analyzing reliability data from a Bayesian perspective. The adoption and application of Bayesian methods in virtually all branches of science and engineering have significantly increased over the past few decades. This increase is largely due to advances in simulation-based computational tools for implementing Bayesian methods. The authors extensively use such tools throughout this book, focusing on assessing the reliability of components and systems with particular attention to hierarchical models and models incorporating explanatory variables. Such models include failure time regression models, accelerated testing models, and degradation models. The authors pay special attention to Bayesian goodness-of-fit testing, model validation, reliability test design, and assurance test planning. Throughout the book, the authors use Markov chain Monte Carlo (MCMC) algorithms for implementing Bayesian analyses -- algorithms that make the Bayesian approach to reliability computationally feasible and conceptually straightforward. This book is primarily a reference collection of modern Bayesian methods in reliability for use by reliability practitioners. There are more than 70 illustrative examples, most of which utilize real-world data. This book can also be used as a textbook for a course in reliability and contains more than 160 exercises. Noteworthy highlights of the book include Bayesian approaches for the following:
Research in Bayesian analysis and statistical decision theory is rapidly expanding and diversifying, making it increasingly more difficult for any single researcher to stay up to date on all current research frontiers. This book provides a review of current research challenges and opportunities. While the book can not exhaustively cover all current research areas, it does include some exemplary discussion of most research frontiers. Topics include objective Bayesian inference, shrinkage estimation and other decision based estimation, model selection and testing, nonparametric Bayes, the interface of Bayesian and frequentist inference, data mining and machine learning, methods for categorical and spatio-temporal data analysis and posterior simulation methods. Several major application areas are covered: computer models, Bayesian clinical trial design, epidemiology, phylogenetics, bioinformatics, climate modeling and applications in political science, finance and marketing. As a review of current research in Bayesian analysis the book presents a balance between theory and applications. The lack of a clear demarcation between theoretical and applied research is a reflection of the highly interdisciplinary and often applied nature of research in Bayesian statistics. The book is intended as an update for researchers in Bayesian statistics, including non-statisticians who make use of Bayesian inference to address substantive research questions in other fields. It would also be useful for graduate students and research scholars in statistics or biostatistics who wish to acquaint themselves with current research frontiers.
These notes are based on lectures presented during the seminar on " Asymptotic Statistics" held at SchloB Reisensburg, Gunzburg, May 29-June 5, 1988. They consist of two parts, the theory of asymptotic expansions in statistics and probabilistic aspects of the asymptotic distribution theory in nonparametric statistics. Our intention is to provide a comprehensive presentation of these two subjects, leading from elementary facts to the advanced theory and recent results. Prospects for further research are also included. We would like to thank all participants for their stimulating discussions and their interest in the subjects, which made lecturing very pleasant. Special thanks are due H. Zimmer for her excellent typing. We would also like to take this opportunity to to express our thanks to the Gesellschaft fur mathematische Forschung and to the Deutsche Mathematiker Vereinigung, especially to Professor G. Fischer, for the opportunity to present these lectures and to the Birkhauser Verlag for the publication of these lecture notes. R. Bhattacharya, M. Denker Part I: Asymptotic Expansions in Statistics Rabi Bhattacharya 11 1. CRAMER-EDGEWORTH EXPANSIONS Let Q be a probability measure on (IRk, B"), B" denoting the Borel sigmafield on IR". Assume that the s - th absolute moment of Q is finite, (1.1) P. := J II x lis Q(dx) < 00, for some integer s;::: 3, and that Q is normalized, (1.2) J x(i)Q(dx) = 0 (1 ~ i ~ k), J x(i)x(j)Q(dx) = Dij (1 ~ i,j ~ k).
Apart from the underlying theme that all the contributions to this volume pertain to models set in an infinite dimensional space, they differ on many counts. Some were written in the early seventies while others are reports of ongoing research done especially with this volume in mind. Some are surveys of material that can, at least at this point in time, be deemed to have attained a satisfactory solution of the problem, while oth ers represent initial forays into an original and novel formulation. Some furnish alternative proofs of known, and by now, classical results, while others can be seen as groping towards and exploring formulations that have not yet reached a definitive form. The subject matter also has a wide leeway, ranging from solution concepts for economies to those for games and also including representation of preferences and discussion of purely mathematical problems, all within the rubric of choice variables belonging to an infinite dimensional space, interpreted as a commodity space or as a strategy space. Thus, this is a collective enterprise in a fairly wide sense of the term and one with the diversity of which we have interfered as little as possible. Our motivation for bringing all of this work under one set of covers was severalfold."
VLSI CADhas greatly bene?ted from the use of reduced ordered Binary Decision Diagrams (BDDs) and the clausal representation as a problem of Boolean Satis?ability (SAT), e.g. in logic synthesis, ver- cation or design-for-testability. In recent practical applications, BDDs are optimized with respect to new objective functions for design space exploration. The latest trends show a growing number of proposals to fuse the concepts of BDD and SAT. This book gives a modern presentation of the established as well as of recent concepts. Latest results in BDD optimization are given, c- ering di?erent aspects of paths in BDDs and the use of e?cient lower bounds during optimization. The presented algorithms include Branch ? and Bound and the generic A -algorithm as e?cient techniques to - plore large search spaces. ? The A -algorithm originates from Arti?cial Intelligence (AI), and the EDA community has been unaware of this concept for a long time. Re- ? cently, the A -algorithm has been introduced as a new paradigm to explore design spaces in VLSI CAD. Besides AI search techniques, the book also discusses the relation to another ?eld of activity bordered to VLSI CAD and BDD optimization: the clausal representation as a SAT problem.
Linear regression is an important area of statistics, theoretical or applied. There have been a large number of estimation methods proposed and developed for linear regression. Each has its own competitive edge but none is good for all purposes. This manuscript focuses on construction of an adaptive combination of two estimation methods. The purpose of such adaptive methods is to help users make an objective choice and to combine desirable properties of two estimators.
The place in survival analysis now occupied by proportional hazards models and their generalizations is so large that it is no longer conceivable to offer a course on the subject without devoting at least half of the content to this topic alone. This book focuses on the theory and applications of a very broad class of models - proportional hazards and non-proportional hazards models, the former being viewed as a special case of the latter - which underlie modern survival analysis. Researchers and students alike will find that this text differs from most recent works in that it is mostly concerned with methodological issues rather than the analysis itself.
The Handbook is a definitive reference source and teaching aid for
econometricians. It examines models, estimation theory, data
analysis and field applications in econometrics. Comprehensive
surveys, written by experts, discuss recent developments at a level
suitable for professional use by economists, econometricians,
statisticians, and in advanced graduate econometrics courses. For
more information on the Handbooks in Economics series, please see
our home page on http: //www.elsevier.nl/locate/hes
Proceedings of the 4th Pannonian Symposium on Mathematical Statistics, Bad Tatzmannsdorf, Austria, 4-10 September 1983, Volume A.
This book discusses recent developments and the latest research in statistics and its applications, primarily in agriculture and industry, survey sampling and biostatistics, gathering articles on a wide variety of topics. Written by leading academics, scientists, researchers and scholars from around the globe to mark the platinum jubilee of the Department of Statistics, University of Calcutta in 2016, the book is a valuable resource for statisticians, aspiring researchers and professionals across educational levels and disciplines.
This book gives a comprehensive review of results for associated sequences and demimartingales developed so far, with special emphasis on demimartingales and related processes. Probabilistic properties of associated sequences, demimartingales and related processes are discussed in the first six chapters. Applications of some of these results to some problems in nonparametric statistical inference for such processes are investigated in the last three chapters.
The book is devoted to the new trends in random evolutions and their various applications to stochastic evolutionary sytems (SES). Such new developments as the analogue of Dynkin's formulae, boundary value problems, stochastic stability and optimal control of random evolutions, stochastic evolutionary equations driven by martingale measures are considered. The book also contains such new trends in applied probability as stochastic models of financial and insurance mathematics in an incomplete market. In the famous classical financial mathematics Black-Scholes model of a (B, S) market for securities prices, which is used for the description of the evolution of bonds and stocks prices and also for their derivatives, such as options, futures, forward contracts, etc., it is supposed that the dynamic of bonds and stocks prices are set by a linear differential and linear stochastic differential equations, respectively, with interest rate, appreciation rate and volatility such that they are predictable processes. Also, in the Arrow-Debreu economy, the securities prices which support a Radner dynamic equilibrium are a combination of an Ito process and a random point process, with the all coefficients and jumps being predictable processes." |
You may like...
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
Statistics for Management and Economics
Gerald Keller, Nicoleta Gaciu
Paperback
Order Statistics: Applications, Volume…
Narayanaswamy Balakrishnan, C.R. Rao
Hardcover
R3,377
Discovery Miles 33 770
Theory of Games and Economic Behavior
John Von Neumann, Oskar Morgenstern
Hardcover
|