Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Probability & statistics
Increased attention is being paid to the need for statistically educated citizens: statistics is now included in the K-12 mathematics curriculum, increasing numbers of students are taking courses in high school, and introductory statistics courses are required in college. However, increasing the amount of instruction is not sufficient to prepare statistically literate citizens. A major change is needed in how statistics is taught. To bring about this change, three dimensions of teacher knowledge need to be addressed: their knowledge of statistical content, their pedagogical knowledge, and their statistical-pedagogical knowledge, i.e., their specific knowledge about how to teach statistics. This book is written for mathematics and statistics educators and researchers. It summarizes the research and highlights the important concepts for teachers to emphasize, and shows the interrelationships among concepts. It makes specific suggestions regarding how to build classroom activities, integrate technological tools, and assess students' learning. This is a unique book. While providing a wealth of examples through lessons and data sets, it is also the best attempt by members of our profession to integrate suggestions from research findings with statistics concepts and pedagogy. The book's message about the importance of listening to research is loud and clear, as is its message about alternative ways of teaching statistics. This book will impact instructors, giving them pause to consider: "Is what I'm doing now really the best thing for my students? What could I do better?" J. Michael Shaughnessy, Professor, Dept of Mathematical Sciences, Portland State University, USA This is a much-needed text for linking research and practice in teaching statistics. The authors have provided a comprehensive overview of the current state-of-the-art in statistics education research. The insights they have gleaned from the literature should be tremendously helpful for those involved in teaching and researching introductory courses. Randall E. Groth, Assistant Professor of Mathematics Education, Salisbury University, USA
This book is a survey of work on passage times in stable Markov chains with a discrete state space and a continuous time. Passage times have been investigated since early days of probability theory and its applications. The best known example is the first entrance time to a set, which embraces waiting times, busy periods, absorption problems, extinction phenomena, etc. Another example of great interest is the last exit time from a set. The book presents a unifying treatment of passage times, written in a systematic manner and based on modern developments. The appropriate unifying framework is provided by probabilistic potential theory, and the results presented in the text are interpreted from this point of view. In particular, the crucial role of the Dirichlet problem and the Poisson equation is stressed. The work is addressed to applied probalilists, and to those who are interested in applications of probabilistic methods in their own areas of interest. The level of presentation is that of a graduate text in applied stochastic processes. Hence, clarity of presentation takes precedence over secondary mathematical details whenever no serious harm may be expected. Advanced concepts described in the text gain nowadays growing acceptance in applied fields, and it is hoped that this work will serve as an useful introduction. Abstracted by Mathematical Reviews, issue 94c
Through refereed papers, this volume focuses on the foundations of the Bayesian paradigm; their comparison to objectivistic or frequentist Statistics counterparts; and the appropriate application of Bayesian foundations. This research in Bayesian Statistics is applicable to data analysis in biostatistics, clinical trials, law, engineering, and the social sciences. EBEB, the Brazilian Meeting on Bayesian Statistics, is held every two years by the ISBrA, the International Society for Bayesian Analysis, one of the most active chapters of the ISBA. The 12th meeting took place March 10-14, 2014 in Atibaia. Interest in foundations of inductive Statistics has grown recently in accordance with the increasing availability of Bayesian methodological alternatives. Scientists need to deal with the ever more difficult choice of the optimal method to apply to their problem. This volume shows how Bayes can be the answer. The examination and discussion on the foundations work towards the goal of proper application of Bayesian methods by the scientific community. Individual papers range in focus from posterior distributions for non-dominated models, to combining optimization and randomization approaches for the design of clinical trials, and classification of archaeological fragments with Bayesian networks.
The last twenty years have witnessed a significant growth of interest in optimal factorial designs, under possible model uncertainty, via the minimum aberration and related criteria. This book gives, for the first time in book form, a comprehensive and up-to-date account of this modern theory. Many major classes of designs are covered in the book. While maintaining a high level of mathematical rigor, it also provides extensive design tables for research and practical purposes. Apart from being useful to researchers and practitioners, the book can form the core of a graduate level course in experimental design.
Advances in Growth Curve Models: Topics from the Indian Statistical Institute is developed from the Indian Statistical Institute's A National Conference on Growth Curve Models. This conference took place between March 28-30, 2012 in Giridih, Jharkhand, India. Jharkhand is a tribal area. Advances in Growth Curve Models: Topics from the Indian Statistical Institute shares the work of researchers in growth models used in multiple fields. A growth curve is an empirical model of the evolution of a quantity over time. Case studies and theoretical findings, important applications in everything from health care to population projection, form the basis of this volume. Growth curves in longitudinal studies are widely used in many disciplines including: Biology, Population studies, Economics, Biological Sciences, SQC, Sociology, Nano-biotechnology, and Fluid mechanics. Some included reports are research topics that have just been developed, whereas others present advances in existing literature. Both included tools and techniques will assist students and researchers in their future work. Also included is a discussion of future applications of growth curve models.
The Minimum Message Length (MML) Principle is an information-theoretic approach to induction, hypothesis testing, model selection, and statistical inference. MML, which provides a formal specification for the implementation of Occam's Razor, asserts that the a ~besta (TM) explanation of observed data is the shortest. Further, an explanation is acceptable (i.e. the induction is justified) only if the explanation is shorter than the original data. This book gives a sound introduction to the Minimum Message Length Principle and its applications, provides the theoretical arguments for the adoption of the principle, and shows the development of certain approximations that assist its practical application. MML appears also to provide both a normative and a descriptive basis for inductive reasoning generally, and scientific induction in particular. The book describes this basis and aims to show its relevance to the Philosophy of Science. Statistical and Inductive Inference by Minimum Message Length will be of special interest to graduate students and researchers in Machine Learning and Data Mining, scientists and analysts in various disciplines wishing to make use of computer techniques for hypothesis discovery, statisticians and econometricians interested in the underlying theory of their discipline, and persons interested in the Philosophy of Science. The book could also be used in a graduate-level course in Machine Learning and Estimation and Model-selection, Econometrics and Data Mining. "Any statistician interested in the foundations of the discipline, or the deeper philosophical issues of inference, will find this volume a rewarding read." Short Book Reviews of theInternational Statistical Institute, December 2005
The book presents advanced stochastic models and simulation methods for random flows and transport of particles by turbulent velocity fields and flows in porous media. Two main classes of models are constructed: (1) turbulent flows are modeled as synthetic random fields which have certain statistics and features mimicing those of turbulent fluid in the regime of interest, and (2) the models are constructed in the form of stochastic differential equations for stochastic Lagrangian trajectories of particles carried by turbulent flows. The book is written for mathematicians, physicists, and engineers studying processes associated with probabilistic interpretation, researchers in applied and computational mathematics, in environmental and engineering sciences dealing with turbulent transport and flows in porous media, as well as nucleation, coagulation, and chemical reaction analysis under fluctuation conditions. It can be of interest for students and post-graduates studying numerical methods for solving stochastic boundary value problems of mathematical physics and dispersion of particles by turbulent flows and flows in porous media.
This book provides a fresh approach to reliability theory, an area that has gained increasing relevance in fields from statistics and engineering to demography and insurance. Its innovative use of quantile functions gives an analysis of lifetime data that is generally simpler, more robust, and more accurate than the traditional methods, and opens the door for further research in a wide variety of fields involving statistical analysis. In addition, the book can be used to good effect in the classroom as a text for advanced undergraduate and graduate courses in Reliability and Statistics.
My ?rst encounter with the world of crime and punishment was more than two decades ago, and it has since undergone vast changes. No one could have foreseen that crime-related problems would occupy such a prominent position in cultural awareness. Crime is on the rise, the public attention devoted to it has increased even more, and its political importance has mushroomed. The major change in the 1990s was perhaps the transformation of crime into a safety issue. Crime is no longer a matter involving offenders, victims, the police and the courts, it involves everyone and any number of agencies and institutions from security companies to the local authorities and from schools to pub and restaurant owners. Crime has become a much larger complex than the judicial system-a complex organized mentally and institutionally around this one concept of safety. In this book I make an effort to get to the bottom of this complex. It is the sequel to my dissertation Crime and Morality-The Moral Signi?cance of Criminal Justice in a Postmodern Culture (2000), where I hold that the victim became the essence of crime in Western culture, and that this in turn shaped public morality. In the second half of the twentieth century, a personal morality based on an awareness of our own and other people's vulnerability, i. e. potential victimhood, succeeded the ethics of duty.
This volume presents the latest developments in the highly active and rapidly growing field of diffusion MRI. The reader will find numerous contributions covering a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods and estimation techniques for the in-vivo recovery of microstructural and connectivity features, as well as frontline applications in neuroscience research and clinical practice. These proceedings contain the papers presented at the 2017 MICCAI Workshop on Computational Diffusion MRI (CDMRI'17) held in Quebec, Canada on September 10, 2017, sharing new perspectives on the most recent research challenges for those currently working in the field, but also offering a valuable starting point for anyone interested in learning computational techniques in diffusion MRI. This book includes rigorous mathematical derivations, a large number of rich, full-colour visualisations and clinically relevant results. As such, it will be of interest to researchers and practitioners in the fields of computer science, MRI physics and applied mathematics.
Statistics are everywhere. Their power and their undoubted efficacy in many areas have given rise to faith in measurement and metrics. More of them will tell us all that we need to know. Their use carries with it a number of presuppositions: that reality can be satisfactorily represented and that it can be controlled or the risks managed. The papers in this book interpret the ethics and aesthetics of statistics in terms of representation, visualisation and accessibility, focus on the appeal of 'simplicity', of technical languages, numbers, diagrams and pictures, and pay attention to their connection with action plans. The book explores what has made educational researchers dependent on statistics, and deals with their use in areas such as the prevalence of maltreatment of children, European citizenship, well-being and happiness, illegal migrants, and university expansion. There is discussion of how the quest for more and better statistics finds its voice in policy initiatives that become slogans, and how public opinion polls are used to rationalise political decision-making. Can a more limited and modest use be made of statistics which does not deflect attention away from education's core business and which does not destroy the local practical knowledge that on which good education is based? 'Smeyers and Depaepe continue to bring together a significant international group of educational philosophers and historians on topics of importance to researchers. This fifth volume in their series takes up the 'gold standard' use of statistics in case studies not contributed elsewhere. I highly recommend this text to counter a current over-emphasis on technique in research methodology. Use of statistics remains but herein under new, insightful conceptualizations.' Lynda Stone, Philosophy of Education, University of North Carolina at Chapel Hill, USA 'Once again, Depaepe and Smeyers succeeded in bringing together distinguished international and cross-disciplinary scholars exploring very timely and critical issues in current educational research. This is a groundbreaking book on a theme that can't be ignored by educational researchers and those interested in a better understanding of the culture of science and science as culture. Moreover, the present book instigates to study history of educational research, a limited but developing field, and invites reflection to those who are sometimes too reliant on number crunching as a mode of interpretation and rather credulous in the acceptance of institutional records. Frank Simon, Faculty of Psychology and Educational Sciences, Ghent University, Belgium
This monograph considers the evaluation and expression of measurement uncertainty within the mathematical framework of the Theory of Evidence. With a new perspective on the metrology science, the text paves the way for innovative applications in a wide range of areas. Building on Simona Salicone's Measurement Uncertainty: An Approach via the Mathematical Theory of Evidence, the material covers further developments of the Random Fuzzy Variable (RFV) approach to uncertainty and provides a more robust mathematical and metrological background to the combination of measurement results that leads to a more effective RFV combination method. While the first part of the book introduces measurement uncertainty, the Theory of Evidence, and fuzzy sets, the following parts bring together these concepts and derive an effective methodology for the evaluation and expression of measurement uncertainty. A supplementary downloadable program allows the readers to interact with the proposed approach by generating and combining RFVs through custom measurement functions. With numerous examples of applications, this book provides a comprehensive treatment of the RFV approach to uncertainty that is suitable for any graduate student or researcher with interests in the measurement field.
This book presents the foundations of key problems in computational molecular biology and bioinformatics. It focuses on computational and statistical principles applied to genomes, and introduces the mathematics and statistics that are crucial for understanding these applications. The book features a free download of the R software statistics package and the text provides great crossover material that is interesting and accessible to students in biology, mathematics, statistics and computer science. More than 100 illustrations and diagrams reinforce concepts and present key results from the primary literature. Exercises are given at the end of chapters.
Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This third edition includes the most recent advances and has new and expanded sections on topics such as: Bayesian Network; Discriminative Random Fields; Strong Random Fields; Spatial-Temporal Models; Learning MRF for Classification. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in these areas.
This book offers comprehensive information on the theory, models and algorithms involved in state-of-the-art multivariate time series analysis and highlights several of the latest research advances in climate and environmental science. The main topics addressed include Multivariate Time-Frequency Analysis, Artificial Neural Networks, Stochastic Modeling and Optimization, Spectral Analysis, Global Climate Change, Regional Climate Change, Ecosystem and Carbon Cycle, Paleoclimate, and Strategies for Climate Change Mitigation. The self-contained guide will be of great value to researchers and advanced students from a wide range of disciplines: those from Meteorology, Climatology, Oceanography, the Earth Sciences and Environmental Science will be introduced to various advanced tools for analyzing multivariate data, greatly facilitating their research, while those from Applied Mathematics, Statistics, Physics, and the Computer Sciences will learn how to use these multivariate time series analysis tools to approach climate and environmental topics.
Nonlinear models have been used extensively in the areas of economics and finance. Recent literature on the topic has shown that a large number of series exhibit nonlinear dynamics as opposed to the alternative--linear dynamics. Incorporating these concepts involves deriving and estimating nonlinear time series models, and these have typically taken the form of Threshold Autoregression (TAR) models, Exponential Smooth Transition (ESTAR) models, and Markov Switching (MS) models, among several others. This edited volume provides a timely overview of nonlinear estimation techniques, offering new methods and insights into nonlinear time series analysis. It features cutting-edge research from leading academics in economics, finance, and business management, and will focus on such topics as Zero-Information-Limit-Conditions, using Markov Switching Models to analyze economics series, and how best to distinguish between competing nonlinear models. Principles and techniques in this book will appeal to econometricians, finance professors teaching quantitative finance, researchers, and graduate students interested in learning how to apply advances in nonlinear time series modeling to solve complex problems in economics and finance.
This book presents the state of the art in multilevel analysis, with an emphasis on more advanced topics. These topics are discussed conceptually, analyzed mathematically, and illustrated by empirical examples. Multilevel analysis is the statistical analysis of hierarchically and non-hierarchically nested data. The simplest example is clustered data, such as a sample of students clustered within schools. Multilevel data are especially prevalent in the social and behavioral sciences and in the biomedical sciences. The chapter authors are all leading experts in the field. Given the omnipresence of multilevel data in the social, behavioral, and biomedical sciences, this book is essential for empirical researchers in these fields.
This book provides a self-contained review of all the relevant topics in probability theory. A software package called MAXIM, which runs on MATLAB, is made available for downloading. Vidyadhar G. Kulkarni is Professor of Operations Research at the University of North Carolina at Chapel Hill.
Elements of Large Sample Theory provides a unified treatment of first-order large-sample theory. It discusses a broad range of applications including introductions to density estimation, the bootstrap, and the asymptotics of survey methodology written at an elementary level. The book is suitable for students at the Master's level in statistics and in aplied fields who have a background of two years of calculus. E.L. Lehmann is Professor of Statistics Emeritus at the University of California, Berkeley. He is a member of the National Academy of Sciences and the American Academy of Arts and Sciences, and the recipient of honorary degrees from the University of Leiden, The Netherlands, and the University of Chicago. Also available: E.L. Lehmann and George Casella, Theory at Point Estimation, Second Edition. Springer-Verlag New York, Inc., 1998, 640 pp., Cloth, ISBN 0-387-98502-6. E.L. Lehmann, Testing Statistical Hypotheses, Second Edition. Springer-Verlag New York, Inc., 1997, 624 pp., Cloth, ISBN 0-387-94919-4.
When no samples are available to estimate a probability distribution, we have to invite some domain experts to evaluate the belief degree that each event will happen. Perhaps some people think that the belief degree should be modeled by subjective probability or fuzzy set theory. However, it is usually inappropriate because both of them may lead to counterintuitive results in this case. In order to rationally deal with belief degrees, uncertainty theory was founded in 2007 and subsequently studied by many researchers. Nowadays, uncertainty theory has become a branch of axiomatic mathematics for modeling belief degrees. This is an introductory textbook on uncertainty theory, uncertain programming, uncertain statistics, uncertain risk analysis, uncertain reliability analysis, uncertain set, uncertain logic, uncertain inference, uncertain process, uncertain calculus, and uncertain differential equation. This textbook also shows applications of uncertainty theory to scheduling, logistics, networks, data mining, control, and finance.
This book presents the refereed proceedings of the Twelfth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at Stanford University (California) in August 2016. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising in particular, in finance, statistics, computer graphics and the solution of PDEs.
In this volume consideration was given to more advanced theoretical approaches and novel applications of reliability to ensure that topics having a futuristic impact were specifically included. Topics like finance, forensics, information, and orthopedics, as well as the more traditional reliability topics were purposefully undertaken to make this collection different from the existing books in reliability. The entries have been categorized into seven parts, each emphasizing a theme that seems poised for the future development of reliability as an academic discipline with relevance. The seven parts are networks and systems; recurrent events; information and design; failure rate function and burn-in; software reliability and random environments; reliability in composites and orthopedics, and reliability in finance and forensics. Embedded within the above are some of the other currently active topics such as causality, cascading, exchangeability, expert testimony, hierarchical modeling, optimization and survival analysis. These topics, when linked with utility theory, constitute the science base of risk analysis.
The Mathieu series is a functional series introduced by Emile Leonard Mathieu for the purposes of his research on the elasticity of solid bodies. Bounds for this series are needed for solving biharmonic equations in a rectangular domain. In addition to Tomovski and his coauthors, Pogany, Cerone, H. M. Srivastava, J. Choi, etc. are some of the known authors who published results concerning the Mathieu series, its generalizations and their alternating variants. Applications of these results are given in classical, harmonic and numerical analysis, analytical number theory, special functions, mathematical physics, probability, quantum field theory, quantum physics, etc. Integral representations, analytical inequalities, asymptotic expansions and behaviors of some classes of Mathieu series are presented in this book. A systematic study of probability density functions and probability distributions associated with the Mathieu series, its generalizations and Planck's distribution is also presented. The book is addressed at graduate and PhD students and researchers in mathematics and physics who are interested in special functions, inequalities and probability distributions.
Selected papers submitted by participants of the international Conference "Stochastic Analysis and Applied Probability 2010" ( www.saap2010.org ) make up the basis of this volume. The SAAP 2010 was held in Tunisia, from 7-9 October, 2010, and was organized by the "Applied Mathematics & Mathematical Physics" research unit of the preparatory institute to the military academies of Sousse (Tunisia), chaired by Mounir Zili. The papers cover theoretical, numerical and applied aspects of stochastic processes and stochastic differential equations. The study of such topic is motivated in part by the need to model, understand, forecast and control the behavior of many natural phenomena that evolve in time in a random way. Such phenomena appear in the fields of finance, telecommunications, economics, biology, geology, demography, physics, chemistry, signal processing and modern control theory, to mention just a few. As this book emphasizes the importance of numerical and theoretical studies of the stochastic differential equations and stochastic processes, it will be useful for a wide spectrum of researchers in applied probability, stochastic numerical and theoretical analysis and statistics, as well as for graduate students. To make it more complete and accessible for graduate students, practitioners and researchers, the editors Mounir Zili and Daria Filatova have included a survey dedicated to the basic concepts of numerical analysis of the stochastic differential equations, written by Henri Schurz. |
You may like...
Advances in Quantum Monte Carlo
Shigenori Tanaka, Stuart M. Rothstein, …
Hardcover
R5,411
Discovery Miles 54 110
Theory of Games and Economic Behavior
John Von Neumann, Oskar Morgenstern
Hardcover
Time Series Analysis - With Applications…
Jonathan D. Cryer, Kung-Sik Chan
Hardcover
R2,549
Discovery Miles 25 490
Statistics for Management and Economics
Gerald Keller, Nicoleta Gaciu
Paperback
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
The Practice of Statistics for Business…
David S Moore, George P. McCabe, …
Mixed media product
R2,284
Discovery Miles 22 840
|