![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Probability & statistics
Networks can provide a useful model and graphic image useful for the description of a wide variety of web-like structures in the physical and man-made realms, e.g. protein networks, food webs and the Internet. The contributions gathered in the present volume provide both an introduction to, and an overview of, the multifaceted phenomenology of complex networks. Statistical Mechanics of Complex Networks also provides a state-of-the-art picture of current theoretical methods and approaches.
The aim of this book is to report on the progress realized in
probability theory in the field of dynamic random walks and to
present applications in computer science, mathematical physics and
finance. Each chapter contains didactical material as well as more
advanced technical sections. Few appendices will help refreshing
memories (if necessary!).
"The outstanding strengths of the book are its topic coverage, references, exposition, examples and problem sets... This book is an excellent addition to any mathematical statistician's library." -Bulletin of the American Mathematical Society In this new edition the author has added substantial material on Bayesian analysis, including lengthy new sections on such important topics as empirical and hierarchical Bayes analysis, Bayesian calculation, Bayesian communication, and group decision making. With these changes, the book can be used as a self-contained introduction to Bayesian analysis. In addition, much of the decision-theoretic portion of the text was updated, including new sections covering such modern topics as minimax multivariate (Stein) estimation.
This work supplies the reader with formulas, maps out the procedure to follow, and provides working charts, tables, and calculating machines to allow the reader to compute statistics for application to problems in psychology and education.
This book explores all relevant aspects of net scoring, also known as uplift modeling: a data mining approach used to analyze and predict the effects of a given treatment on a desired target variable for an individual observation. After discussing modern net score modeling methods, data preparation, and the assessment of uplift models, the book investigates software implementations and real-world scenarios. Focusing on the application of theoretical results and on practical issues of uplift modeling, it also includes a dedicated chapter on software solutions in SAS, R, Spectrum Miner, and KNIME, which compares the respective tools. This book also presents the applications of net scoring in various contexts, e.g. medical treatment, with a special emphasis on direct marketing and corresponding business cases. The target audience primarily includes data scientists, especially researchers and practitioners in predictive modeling and scoring, mainly, but not exclusively, in the marketing context.
Spatial statistics are useful in subjects as diverse as climatology, ecology, economics, environmental and earth sciences, epidemiology, image analysis and more. This book covers the best-known spatial models for three types of spatial data: geostatistical data (stationarity, intrinsic models, variograms, spatial regression and space-time models), areal data (Gibbs-Markov fields and spatial auto-regression) and point pattern data (Poisson, Cox, Gibbs and Markov point processes). The level is relatively advanced, and the presentation concise but complete. The most important statistical methods and their asymptotic
properties are described, including estimation in geostatistics,
autocorrelation and second-order statistics, maximum likelihood
methods, approximate inference using the pseudo-likelihood or
Monte-Carlo simulations, statistics for point processes and
Bayesian hierarchical models. A chapter is devoted to Markov Chain
Monte Carlo simulation (Gibbs sampler, Metropolis-Hastings
algorithms and exact simulation). This book is the English translation of Modelisation et Statistique Spatiales published by Springer in the series Mathematiques & Applications, a series established by Societe de Mathematiques Appliquees et Industrielles (SMAI)."
Probability is relevant to so many different subject areas that its
importance as a mathematical technique cannot be underestimated.
This book provides a comprehensive, user-friendly introduction to
the subject. The step-by-step approach taken by the author allows
students to develop knowledge at their own pace and, by working
through the numerous exercises, they are ensured a full
understanding of the material before moving on to more advanced
sections. Traditional examples of probablistic theory, such as
coins and dice, are included but the author has also used many
exercises based on real-life problems. The result is an
introduction to probability that avoids the overly confusing,
theoretical approach often adopted in this area, and provides a
simple and concise text that will be invaluable to all studying
first and second year courses on the subject.
This book contains selected contributions from the geoENV98 - the Second European Conference on Geostatistics for Environmental Sciences, held in Valencia, Spain in November 1998. This second book of the geoENV series illustrates the developments on geostatistics as applied to the environmental sciences which have occurred during the past two years. It also presents practical applications which will be of interest to both researchers and practitioners. The book starts with three keynote papers on ecology, climatology and soil science, followed by forty-three contributions. The contents of the book are eminently practical. The objective of the editors was to compile a set of papers in which the reader could perceive how geostatistics is applied within the environmental sciences. A few selected theoretical contributions are also included. The papers are organized in the following seven main areas Air pollution Climatology Ecology Hydrogeology Soil Science Theory Other applications presenting applications varying from particle matter analysis, noise exposure sampling, space-time modeling of ozone levels, downscaling of precipitation, kriging with categorical external drift, analysis of fish abundance, combining variograms and radio-telemetry in ecology, kriging radionuclide deposition, mapping of soil contamination, network design for soil monitoring, inverse modeling in hydrogeology, groundwater transport modeling, coastal evolution mapping to spatial modeling of cancer ratios. Audience: This publication will be of great interest and practical value to geostatisticians working both in academia and in industry.
The worlds of Wall Street and The City have always held a certain allure, but in recent years have left an indelible mark on the wider public consciousness and there has been a need to become more financially literate. The quantitative nature of complex financial transactions makes them a fascinating subject area for mathematicians of all types, whether for general interest or because of the enormous monetary rewards on offer. An Introduction to Quantitative Finance concerns financial derivatives - a derivative being a contract between two entities whose value derives from the price of an underlying financial asset - and the probabilistic tools that were developed to analyse them. The theory in the text is motivated by a desire to provide a suitably rigorous yet accessible foundation to tackle problems the author encountered whilst trading derivatives on Wall Street. The book combines an unusual blend of real-world derivatives trading experience and rigorous academic background. Probability provides the key tools for analysing and valuing derivatives. The price of a derivative is closely linked to the expected value of its pay-out, and suitably scaled derivative prices are martingales, fundamentally important objects in probability theory. The prerequisite for mastering the material is an introductory undergraduate course in probability. The book is otherwise self-contained and in particular requires no additional preparation or exposure to finance. It is suitable for a one-semester course, quickly exposing readers to powerful theory and substantive problems. The book may also appeal to students who have enjoyed probability and have a desire to see how it can be applied. Signposts are given throughout the text to more advanced topics and to different approaches for those looking to take the subject further.
Blending Approximations with Sine Functions.- Quasi-interpolation in the Absence of Polynomial Reproduction.- Estimating the Condition Number for Multivariate Interpolation Problems.- Wavelets on a Bounded Interval.- Quasi-Kernel Polynomials and Convergence Results for Quasi-Minimal Residual Iterations.- Rate of Approximation of Weighted Derivatives by Linear Combinations of SMD Operators.- Approximation by Multivariate Splines: an Application of Boolean Methods.- Lm, ?, s-Splines in ?d.- Constructive Multivariate Approximation via Sigmoidal Functions with Applications to Neural Networks.- Spline-Wavelets of Minimal Support.- Necessary Conditions for Local Best Chebyshev Approximations by Splines with Free Knots.- C1 Interpolation on Higher-Dimensional Analogs of the 4-Direction Mesh.- Tabulation of Thin Plate Splines on a Very Fine Two-Dimensional Grid.- The L2-Approximation Orders of Principal Shift-Invariant Spaces Generated by a Radial Basis Function.- A Multi-Parameter Method for Nonlinear Least-Squares Approximation.- Analog VLSI Networks.- Converse Theorems for Approximation on Discrete Sets II.- A Dual Method for Smoothing Histograms using Nonnegative C1-Splines.- Segment Approximation By Using Linear Functionals.- Construction of Monotone Extensions to Boundary Function
This volume of the Encyclopaedia is a survey of stochastic calculus, an increasingly important part of probability, authored by well-known experts in the field. The book addresses graduate students and researchers in probability theory and mathematical statistics, as well as physicists and engineers who need to apply stochastic methods.
This book contains a selection of papers presented at the conference on High Performance Software for Nonlinear Optimization (HPSN097) which was held in Ischia, Italy, in June 1997. The rapid progress of computer technologies, including new parallel architec tures, has stimulated a large amount of research devoted to building software environments and defining algorithms able to fully exploit this new computa tional power. In some sense, numerical analysis has to conform itself to the new tools. The impact of parallel computing in nonlinear optimization, which had a slow start at the beginning, seems now to increase at a fast rate, and it is reasonable to expect an even greater acceleration in the future. As with the first HPSNO conference, the goal of the HPSN097 conference was to supply a broad overview of the more recent developments and trends in nonlinear optimization, emphasizing the algorithmic and high performance software aspects. Bringing together new computational methodologies with theoretical ad vances and new computer technologies is an exciting challenge that involves all scientists willing to develop high performance numerical software. This book contains several important contributions from different and com plementary standpoints. Obviously, the articles in the book do not cover all the areas of the conference topic or all the most recent developments, because of the large number of new theoretical and computational ideas of the last few years."
This book considers some models described by means of partial dif ferential equations and boundary conditions with chaotic stochastic disturbance. In a framework of stochastic Partial Differential Equa tions an approach is suggested to generalize solutions of stochastic Boundary Problems. The main topic concerns probabilistic aspects with applications to well-known Random Fields models which are representative for the corresponding stochastic Sobolev spaces. {The term "stochastic" in general indicates involvement of appropriate random elements. ) It assumes certain knowledge in general Analysis and Probability {Hilbert space methods, Schwartz distributions, Fourier transform) . I A very general description of the main problems considered can be given as follows. Suppose, we are considering a random field ~ in a region T ~ Rd which is associated with a chaotic (stochastic) source"' by means of the differential equation (*) in T. A typical chaotic source can be represented by an appropri ate random field"' with independent values, i. e. , generalized random function"' = ( cp, 'TJ), cp E C~(T), with independent random variables ( cp, 'fJ) for any test functions cp with disjoint supports. The property of having independent values implies a certain "roughness" of the ran dom field "' which can only be treated functionally as a very irregular Schwarz distribution. With the lack of a proper development of non linear analyses for generalized functions, let us limit ourselves to the 1 For related material see, for example, J. L. Lions, E.
This book prepares students to execute the quantitative and computational needs of the finance industry. The quantitative methods are explained in detail with examples from real financial problems like option pricing, risk management, portfolio selection, etc. Codes are provided in R programming language to execute the methods. Tables and figures, often with real data, illustrate the codes. References to related work are intended to aid the reader to pursue areas of specific interest in further detail. The comprehensive background with economic, statistical, mathematical, and computational theory strengthens the understanding. The coverage is broad, and linkages between different sections are explained. The primary audience is graduate students, while it should also be accessible to advanced undergraduates. Practitioners working in the finance industry will also benefit.
This Festschrift contains five research surveys and thirty-four shorter contributions by participants of the conference ''Stochastic Partial Differential Equations and Related Fields'' hosted by the Faculty of Mathematics at Bielefeld University, October 10-14, 2016. The conference, attended by more than 140 participants, including PostDocs and PhD students, was held both to honor Michael Roeckner's contributions to the field on the occasion of his 60th birthday and to bring together leading scientists and young researchers to present the current state of the art and promising future developments. Each article introduces a well-described field related to Stochastic Partial Differential Equations and Stochastic Analysis in general. In particular, the longer surveys focus on Dirichlet forms and Potential theory, the analysis of Kolmogorov operators, Fokker-Planck equations in Hilbert spaces, the theory of variational solutions to stochastic partial differential equations, singular stochastic partial differential equations and their applications in mathematical physics, as well as on the theory of regularity structures and paracontrolled distributions. The numerous research surveys make the volume especially useful for graduate students and researchers who wish to start work in the above-mentioned areas, or who want to be informed about the current state of the art.
In response to a growing interest in Total Least Squares (TLS) and Errors-In-Variables (EIV) modeling by researchers and practitioners, well-known experts from several disciplines were invited to prepare an overview paper and present it at the third international workshop on TLS and EIV modeling held in Leuven, Belgium, August 27-29, 2001. These invited papers, representing two-thirds of the book, together with a selection of other presented contributions yield a complete overview of the main scientific achievements since 1996 in TLS and Errors-In-Variables modeling. In this way, the book nicely completes two earlier books on TLS (SIAM 1991 and 1997). Not only computational issues, but also statistical, numerical, algebraic properties are described, as well as many new generalizations and applications. Being aware of the growing interest in these techniques, it is a strong belief that this book will aid and stimulate users to apply the new techniques and models correctly to their own practical problems.
tEL moi, .., ' si favait su comment en revenir. je One service mathematics has rendered the n 'y serais point alle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled' discarded nonsense'. The series is divergent; therefore we may be Eric T. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought A highly necessary tool in a world where both feedback and nonlineari ties abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sci ences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One ser vice topology has rendered mathematical physics .. .'; 'One service logic has rendered computer science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
Non-linear stochastic systems are at the center of many engineering
disciplines and progress in theoretical research had led to a
better understanding of non-linear phenomena. This book provides
information on new fundamental results and their applications which
are beginning to appear across the entire spectrum of mechanics.
The book gives a comprehensive overview of modern non-life actuarial science. It starts with a verbal description (i.e. without using mathematical formulae) of the main actuarial problems to be solved in non-life practice. Then in an extensive second chapter all the mathematical tools needed to solve these problems are dealt with - now in mathematical notation. The rest of the book is devoted to the exact formulation of various problems and their possible solutions. Being a good mixture of practical problems and their actuarial solutions, the book addresses above all two types of readers: firstly students (of mathematics, probability and statistics, informatics, economics) having some mathematical knowledge, and secondly insurance practitioners who remember mathematics only from some distance. Prerequisites are basic calculus and probability theory.
Professor Herbert A. David of Iowa State University will be turning 70 on December 19, 1995. He is reaching this milestone in life with a very distinguished career as a statistician, educator and administrator. We are bringing out this volume in his honor to celebrate this occasion and to recognize his contributions to order statistics, biostatistics and design of experiments, among others; and to the statistical profession in general. With great admiration, respect and pleasure we dedicate this festschrift to Professor Herbert A. David, also known as Herb and H.A. among his friends, colleagues and students. When we began this project in Autumn 1993 and contacted potential contributors from the above group, the enthu siasm was phenomenal. The culmination of this collective endeavor is this volume that is being dedicated to him to celebrate his upcoming birthday. Several individuals have contributed in various capacities to the success ful completion of this project. We sincerely thank the authors of the papers appearing here. Without their dedicated work, we would just have this pref ace Many of them have served as (anonymous) referees as well. In addition, we are thankful to the following colleagues for their time and advice: John Bunge (Cornell), Z. Govindarajulu (Kentucky), John Klein (Medical U."
The author's previous book, Random Walk in Random and Non-Random Environments, was devoted to the investigation of the Brownian motion of a simple particle. The present book studies the independent motions of infinitely many particles in the d-dimensional Euclidean space Rd. In Part I the particles at time t = 0 are distributed in Rd according to the law of a given random field and they execute independent random walks. Part II is devoted to branching random walks, i.e. to the case where the particles execute random motions and birth and death processes independently. Finally, in Part III, functional laws of iterated logarithms are proved for the cases of independent motions and branching processes.
This contributed volume comprises research articles and reviews on topics connected to the mathematical modeling of cellular systems. These contributions cover signaling pathways, stochastic effects, cell motility and mechanics, pattern formation processes, as well as multi-scale approaches. All authors attended the workshop on "Modeling Cellular Systems" which took place in Heidelberg in October 2014. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.
A high school student can create deep Q-learning code to control her robot, without any understanding of the meaning of 'deep' or 'Q', or why the code sometimes fails. This book is designed to explain the science behind reinforcement learning and optimal control in a way that is accessible to students with a background in calculus and matrix algebra. A unique focus is algorithm design to obtain the fastest possible speed of convergence for learning algorithms, along with insight into why reinforcement learning sometimes fails. Advanced stochastic process theory is avoided at the start by substituting random exploration with more intuitive deterministic probing for learning. Once these ideas are understood, it is not difficult to master techniques rooted in stochastic control. These topics are covered in the second part of the book, starting with Markov chain theory and ending with a fresh look at actor-critic methods for reinforcement learning.
This volume presents a selection of papers by Henry P. McKean, which illustrate the various areas in mathematics in which he has made seminal contributions. Topics covered include probability theory, integrable systems, geometry and financial mathematics. Each paper represents a contribution by Prof. McKean, either alone or together with other researchers, that has had a profound influence in the respective area. |
You may like...
SAS Graphics for Clinical Trials by…
Kriss Harris, Richann Watson
Hardcover
R1,510
Discovery Miles 15 100
Fourteenth Annual Report of the Bureau…
Charles J Schonfarber Fox
Hardcover
R982
Discovery Miles 9 820
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
Integrated Population Biology and…
Arni S.R. Srinivasa Rao, C.R. Rao
Hardcover
R6,219
Discovery Miles 62 190
Statistics for Management and Economics
Gerald Keller, Nicoleta Gaciu
Paperback
|