![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Probability & statistics
Current research results in stochastic and deterministic global optimization including single and multiple objectives are explored and presented in this book by leading specialists from various fields. Contributions include applications to multidimensional data visualization, regression, survey calibration, inventory management, timetabling, chemical engineering, energy systems, and competitive facility location. Graduate students, researchers, and scientists in computer science, numerical analysis, optimization, and applied mathematics will be fascinated by the theoretical, computational, and application-oriented aspects of stochastic and deterministic global optimization explored in this book. This volume is dedicated to the 70th birthday of Antanas Zilinskas who is a leading world expert in global optimization. Professor Zilinskas's research has concentrated on studying models for the objective function, the development and implementation of efficient algorithms for global optimization with single and multiple objectives, and application of algorithms for solving real-world practical problems.
In this book the dynamics of the non-ideal oscillatory system, in which the excitation is influenced by the response of the oscillator, is presented. Linear and nonlinear oscillators with one or more degrees of freedom interacting with one or more energy sources are treated. This concerns for example oscillating systems excited by a deformed elastic connection, systems excited by an unbalanced rotating mass, systems of parametrically excited oscillator and an energy source, frictionally self-excited oscillator and an energy source, energy harvesting system, portal frame - non-ideal source system, non-ideal rotor system, planar mechanism - non-ideal source interaction. For the systems the regular and irregular motions are tested. The effect of self-synchronization, chaos and methods for suppressing chaos in non-ideal systems are considered. In the book various types of motion control are suggested. The most important property of the non-ideal system connected with the jump-like transition from a resonant state to a non-resonant one is discussed. The so called 'Sommerfeld effect', resonant unstable state and jumping of the system into a new stable state of motion above the resonant region is explained. A mathematical model of the system is solved analytically and numerically. Approximate analytical solving procedures are developed. Besides, simulation of the motion of the non-ideal system is presented. The obtained results are compared with those for the ideal case. A significant difference is evident. The book aims to present the established results and to expand the literature in non-ideal vibrating systems. A further intention of the book is to give predictions of the effects for a system where the interaction between an oscillator and the energy source exist. The book is targeted at engineers and technicians dealing with the problem of source-machine system, but is also written for PhD students and researchers interested in non-linear and non-ideal problems.
The three parts of this book on survey methodology combine an introduction to basic sampling theory, engaging presentation of topics that reflect current research trends, and informed discussion of the problems commonly encountered in survey practice. These related aspects of survey methodology rarely appear together under a single connected roof, making this book a unique combination of materials for teaching, research and practice in survey sampling. Basic knowledge of probability theory and statistical inference is assumed, but no prior exposure to survey sampling is required. The first part focuses on the design-based approach to finite population sampling. It contains a rigorous coverage of basic sampling designs, related estimation theory, model-based prediction approach, and model-assisted estimation methods. The second part stems from original research conducted by the authors as well as important methodological advances in the field during the past three decades. Topics include calibration weighting methods, regression analysis and survey weighted estimating equation (EE) theory, longitudinal surveys and generalized estimating equations (GEE) analysis, variance estimation and resampling techniques, empirical likelihood methods for complex surveys, handling missing data and non-response, and Bayesian inference for survey data. The third part provides guidance and tools on practical aspects of large-scale surveys, such as training and quality control, frame construction, choices of survey designs, strategies for reducing non-response, and weight calculation. These procedures are illustrated through real-world surveys. Several specialized topics are also discussed in detail, including household surveys, telephone and web surveys, natural resource inventory surveys, adaptive and network surveys, dual-frame and multiple frame surveys, and analysis of non-probability survey samples. This book is a self-contained introduction to survey sampling that provides a strong theoretical base with coverage of current research trends and pragmatic guidance and tools for conducting surveys.
IBM SPSS Statistics 27 Step by Step: A Simple Guide and Reference, seventeenth edition, takes a straightforward, step-by-step approach that makes SPSS software clear to beginners and experienced researchers alike. Extensive use of four-color screen shots, clear writing, and step-by-step boxes guide readers through the program. Output for each procedure is explained and illustrated, and every output term is defined. Exercises at the end of each chapter support students by providing additional opportunities to practice using SPSS. This book covers the basics of statistical analysis and addresses more advanced topics such as multidimensional scaling, factor analysis, discriminant analysis, measures of internal consistency, MANOVA (between- and within-subjects), cluster analysis, Log-linear models, logistic regression, and a chapter describing residuals. The end sections include a description of data files used in exercises, an exhaustive glossary, suggestions for further reading, and a comprehensive index. IBM SPSS Statistics 27 Step by Step is distributed in 85 countries, has been an academic best seller through most of the earlier editions, and has proved an invaluable aid to thousands of researchers and students. New to this edition: Screenshots, explanations, and step-by-step boxes have been fully updated to reflect SPSS 27 A new chapter on a priori power analysis helps researchers determine the sample size needed for their research before starting data collection.
This book gathers threads that have evolved across different mathematical disciplines into seamless narrative. It deals with condition as a main aspect in the understanding of the performance ---regarding both stability and complexity--- of numerical algorithms. While the role of condition was shaped in the last half-century, so far there has not been a monograph treating this subject in a uniform and systematic way. The book puts special emphasis on the probabilistic analysis of numerical algorithms via the analysis of the corresponding condition. The exposition's level increases along the book, starting in the context of linear algebra at an undergraduate level and reaching in its third part the recent developments and partial solutions for Smale's 17th problem which can be explained within a graduate course. Its middle part contains a condition-based course on linear programming that fills a gap between the current elementary expositions of the subject based on the simplex method and those focusing on convex programming.
This is the first comprehensive book on information geometry, written by the founder of the field. It begins with an elementary introduction to dualistic geometry and proceeds to a wide range of applications, covering information science, engineering, and neuroscience. It consists of four parts, which on the whole can be read independently. A manifold with a divergence function is first introduced, leading directly to dualistic structure, the heart of information geometry. This part (Part I) can be apprehended without any knowledge of differential geometry. An intuitive explanation of modern differential geometry then follows in Part II, although the book is for the most part understandable without modern differential geometry. Information geometry of statistical inference, including time series analysis and semiparametric estimation (the Neyman-Scott problem), is demonstrated concisely in Part III. Applications addressed in Part IV include hot current topics in machine learning, signal processing, optimization, and neural networks. The book is interdisciplinary, connecting mathematics, information sciences, physics, and neurosciences, inviting readers to a new world of information and geometry. This book is highly recommended to graduate students and researchers who seek new mathematical methods and tools useful in their own fields.
This volume, following in the tradition of a similar 2010 publication by the same editors, is an outgrowth of an international conference, "Fractals and Related Fields II," held in June 2011. The book provides readers with an overview of developments in the mathematical fields related to fractals, including original research contributions as well as surveys from many of the leading experts on modern fractal theory and applications. The chapters cover fields related to fractals such as: *geometric measure theory *ergodic theory *dynamical systems *harmonic and functional analysis *number theory *probability theory Further Developments in Fractals and Related Fields is aimed at pure and applied mathematicians working in the above-mentioned areas as well as other researchers interested in discovering the fractal domain. Throughout the volume, readers will find interesting and motivating results as well as new avenues for further research.
Linear mixed-effects models (LMMs) are an important class of statistical models that can be used to analyze correlated data. Such data are encountered in a variety of fields including biostatistics, public health, psychometrics, educational measurement, and sociology. This book aims to support a wide range of uses for the models by applied researchers in those and other fields by providing state-of-the-art descriptions of the implementation of LMMs in R. To help readers to get familiar with the features of the models and the details of carrying them out in R, the book includes a review of the most important theoretical concepts of the models. The presentation connects theory, software and applications. It is built up incrementally, starting with a summary of the concepts underlying simpler classes of linear models like the classical regression model, and carrying them forward to LMMs. A similar step-by-step approach is used to describe the R tools for LMMs. All the classes of linear models presented in the book are illustrated using real-life data. The book also introduces several novel R tools for LMMs, including new class of variance-covariance structure for random-effects, methods for influence diagnostics and for power calculations. They are included into an R package that should assist the readers in applying these and other methods presented in this text.
This book is summarizing the results of the workshop "Uniform Distribution and Quasi-Monte Carlo Methods" of the RICAM Special Semester on "Applications of Algebra and Number Theory" in October 2013. The survey articles in this book focus on number theoretic point constructions, uniform distribution theory, and quasi-Monte Carlo methods. As deterministic versions of the Monte Carlo method, quasi-Monte Carlo rules enjoy increasing popularity, with many fruitful applications in mathematical practice, as for example in finance, computer graphics, and biology. The goal of this book is to give an overview of recent developments in uniform distribution theory, quasi-Monte Carlo methods, and their applications, presented by leading experts in these vivid fields of research.
The classical optimal control theory deals with the determination of an optimal control that optimizes the criterion subjects to the dynamic constraint expressing the evolution of the system state under the influence of control variables. If this is extended to the case of multiple controllers (also called players) with different and sometimes conflicting optimization criteria (payoff function) it is possible to begin to explore differential games. Zero-sum differential games, also called differential games of pursuit, constitute the most developed part of differential games and are rigorously investigated. In this book, the full theory of differential games of pursuit with complete and partial information is developed. Numerous concrete pursuit-evasion games are solved ("life-line" games, simple pursuit games, etc.), and new time-consistent optimality principles in the n-person differential game theory are introduced and investigated.
This book is intended to make recent results on the derivation of higher order numerical schemes for random ordinary differential equations (RODEs) available to a broader readership, and to familiarize readers with RODEs themselves as well as the closely associated theory of random dynamical systems. In addition, it demonstrates how RODEs are being used in the biological sciences, where non-Gaussian and bounded noise are often more realistic than the Gaussian white noise in stochastic differential equations (SODEs). RODEs are used in many important applications and play a fundamental role in the theory of random dynamical systems. They can be analyzed pathwise with deterministic calculus, but require further treatment beyond that of classical ODE theory due to the lack of smoothness in their time variable. Although classical numerical schemes for ODEs can be used pathwise for RODEs, they rarely attain their traditional order since the solutions of RODEs do not have sufficient smoothness to have Taylor expansions in the usual sense. However, Taylor-like expansions can be derived for RODEs using an iterated application of the appropriate chain rule in integral form, and represent the starting point for the systematic derivation of consistent higher order numerical schemes for RODEs. The book is directed at a wide range of readers in applied and computational mathematics and related areas as well as readers who are interested in the applications of mathematical models involving random effects, in particular in the biological sciences.The level of this book is suitable for graduate students in applied mathematics and related areas, computational sciences and systems biology. A basic knowledge of ordinary differential equations and numerical analysis is required.
Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces.
Starting with the basic linear model where the design and covariance matrices are of full rank, this book demonstrates how the same statistical ideas can be used to explore the more general linear model with rank-deficient design and/or covariance matrices. The unified treatment presented here provides a clearer understanding of the general linear model from a statistical perspective, thus avoiding the complex matrix-algebraic arguments that are often used in the rank-deficient case. Elegant geometric arguments are used as needed.The book has a very broad coverage, from illustrative practical examples in Regression and Analysis of Variance alongside their implementation using R, to providing comprehensive theory of the general linear model with 181 worked-out examples, 227 exercises with solutions, 152 exercises without solutions (so that they may be used as assignments in a course), and 320 up-to-date references.This completely updated and new edition of Linear Models: An Integrated Approach includes the following features:
This volume contains nineteen research papers belonging to the areas of computational statistics, data mining, and their applications. Those papers, all written specifically for this volume, are their authors' contributions to honour and celebrate Professor Jacek Koronacki on the occcasion of his 70th birthday. The book's related and often interconnected topics, represent Jacek Koronacki's research interests and their evolution. They also clearly indicate how close the areas of computational statistics and data mining are.
1. Die Sprache der Wahrscheinlichkeiten.- 2. Ereignisse.- 3. Wahrscheinlichkeitsraume.- 4. Diskrete Wahrscheinlichkeiten. Abzahlungen.- 5. Zufallsvariable.- 6. Bedingte Wahrscheinlichkeit. Unabhangigkeit.- 7. Diskrete Zufallsvariable. Gebrauchliche Verteilungen.- 8. Erwartungswerte. Charakteristische Werte.- 9. Erzeugende Funktionen.- 10. Stieltjes-Lebesgue-Masse. Integrale von reellen Zufallsvariablen.- 11. Erwartungswerte. Absolut stetige Verteilungen.- 12. Zufallsvektoren. Bedingte Erwartungswerte. Normalverteilung.- 13. Erzeugende Funktionen der Momente. Charakteristische Funktionen.- 14. Die wichtigsten (absolut stetigen) Wahrscheinlichkeitsverteilungen.- 15. Verteilungen von Funktionen einer Zufallsvariablen.- 16. Stochastische Konvergenz.- 17. Gesetze der grossen Zahlen.- 18. Zentrale Rolle der Normalverteilung. Zentraler Grenzwertsatz.- 19. Gesetz vom iterierten Logarithmus.- 20. Anwendungen der Wahrscheinlichkeitsrechnung.- Loesungen der UEbungsaufgaben.
This book is designed as a gentle introduction to the fascinating field of choice modeling and its practical implementation using the R language. Discrete choice analysis is a family of methods useful to study individual decision-making. With strong theoretical foundations in consumer behavior, discrete choice models are used in the analysis of health policy, transportation systems, marketing, economics, public policy, political science, urban planning, and criminology, to mention just a few fields of application. The book does not assume prior knowledge of discrete choice analysis or R, but instead strives to introduce both in an intuitive way, starting from simple concepts and progressing to more sophisticated ideas. Loaded with a wealth of examples and code, the book covers the fundamentals of data and analysis in a progressive way. Readers begin with simple data operations and the underlying theory of choice analysis and conclude by working with sophisticated models including latent class logit models, mixed logit models, and ordinal logit models with taste heterogeneity. Data visualization is emphasized to explore both the input data as well as the results of models. This book should be of interest to graduate students, faculty, and researchers conducting empirical work using individual level choice data who are approaching the field of discrete choice analysis for the first time. In addition, it should interest more advanced modelers wishing to learn about the potential of R for discrete choice analysis. By embedding the treatment of choice modeling within the R ecosystem, readers benefit from learning about the larger R family of packages for data exploration, analysis, and visualization.
The book "Computational Error and Complexity in Science and
Engineering" pervades all the science and engineering disciplines
where computation occurs. Scientific and engineering computation
happens to be the interface between the mathematical model/problem
and the real world application. One needs to obtain good quality
numerical values for any real-world implementation. Just
mathematical quantities symbols are of no use to
engineers/technologists. Computational complexity of the numerical
method to solve the mathematical model, also computed along with
the solution, on the other hand, will tell us how much
computation/computational effort has been spent to achieve that
quality of result. Anyone who wants the specified physical problem
to be solved has every right to know the quality of the solution as
well as the resources spent for the solution. The computed error as
well as the complexity provide the scientific convincing answer to
these questions.
The papers in this volume represent the most timely and advanced contributions to the 2014 Joint Applied Statistics Symposium of the International Chinese Statistical Association (ICSA) and the Korean International Statistical Society (KISS), held in Portland, Oregon. The contributions cover new developments in statistical modeling and clinical research: including model development, model checking, and innovative clinical trial design and analysis. Each paper was peer-reviewed by at least two referees and also by an editor. The conference was attended by over 400 participants from academia, industry, and government agencies around the world, including from North America, Asia, and Europe. It offered 3 keynote speeches, 7 short courses, 76 parallel scientific sessions, student paper sessions, and social events.
Hardbound. This reference work covers the many aspects of Robust Inference. Much of what is contained in the chapters, written by leading experts in the field, has not been part of previous surveys of this area. Robust Inference has been an active area of research for the last two decades. Especially during recent years it has been extended in different directions covering a wide variety of models. This volume will be valuable for both graduate students and researchers using statistical methods.
This monograph provides a concise presentation of a mathematical approach to metastability, a wide-spread phenomenon in the dynamics of non-linear systems - physical, chemical, biological or economic - subject to the action of temporal random forces typically referred to as noise, based on potential theory of reversible Markov processes. The authors shed new light on the metastability phenomenon as a sequence of visits of the path of the process to different metastable sets, and focuses on the precise analysis of the respective hitting probabilities and hitting times of these sets. The theory is illustrated with many examples, ranging from finite-state Markov chains, finite-dimensional diffusions and stochastic partial differential equations, via mean-field dynamics with and without disorder, to stochastic spin-flip and particle-hop dynamics and probabilistic cellular automata, unveiling the common universal features of these systems with respect to their metastable behaviour. The monograph will serve both as comprehensive introduction and as reference for graduate students and researchers interested in metastability.
This Festschrift in honour of Ursula Gather's 60th birthday deals with modern topics in the field of robust statistical methods, especially for time series and regression analysis, and with statistical methods for complex data structures. The individual contributions of leading experts provide a textbook-style overview of the topic, supplemented by current research results and questions. The statistical theory and methods in this volume aim at the analysis of data which deviate from classical stringent model assumptions, which contain outlying values and/or have a complex structure. Written for researchers as well as master and PhD students with a good knowledge of statistics.
The biennial CONTROLO conferences are the main events promoted by The CONTROLO 2016 - 12th Portuguese Conference on Automatic Control, Guimaraes, Portugal, September 14th to 16th, was organized by Algoritmi, School of Engineering, University of Minho, in partnership with INESC TEC, and promoted by the Portuguese Association for Automatic Control - APCA, national member organization of the International Federation of Automatic Control - IFAC. The seventy-five papers published in this volume cover a wide range of topics. Thirty-one of them, of a more theoretical nature, are distributed among the first five parts: Control Theory; Optimal and Predictive Control; Fuzzy, Neural and Genetic Control; Modeling and Identification; Sensing and Estimation. The papers go from cutting-edge theoretical research to innovative control applications and show expressively how Automatic Control can be used to increase the well being of people.
Based on the proceedings of a conference on Influence Diagrams for Decision Analysis, Inference and Prediction held at the University of California at Berkeley in May of 1988, this is the first book devoted to the subject. The editors have brought together recent results from researchers actively investigating influence diagrams and also from practitioners who have used influence diagrams in developing models for problem-solving in a wide range of fields.
Covers the key issues required for students wishing to understand and analyse the core empirical issues in economics. It focuses on descriptive statistics, probability concepts and basic econometric techniques and has an accompanying website that contains all the data used in the examples and provides exercises for undertaking original research.
This volume reviews the theory and simulation methods of stochastic kinetics by integrating historical and recent perspectives, presents applications, mostly in the context of systems biology and also in combustion theory. In recent years, due to the development in experimental techniques, such as optical imaging, single cell analysis, and fluorescence spectroscopy, biochemical kinetic data inside single living cells have increasingly been available. The emergence of systems biology brought renaissance in the application of stochastic kinetic methods. |
![]() ![]() You may like...
The South African Guide To Gluten-Free…
Zorah Booley Samaai
Paperback
Nazi Conspiracy And Aggression - Volume…
United States Government
Hardcover
R2,179
Discovery Miles 21 790
|