![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Probability & statistics
This book will equip practitioners with the necessary background in testing hypotheses and decision theory to enable practical applications. Real-world problems of missing and censored data, multiple comparisons, non-responders, after-the-fact covariates, and outliers are dealt with at length. The third edition includes many more real-world illustrations from biology, business, clinical trials, economics, geology, law, medicine, social science, and engineering along with twice the number of exercises. New sections are added on sequential analysis, multivariate analysis, and exact analysis of multi-factor designs.
The book is a comprehensive, self-contained introduction to the mathematical modeling and analysis of disease transmission models. It includes (i) an introduction to the main concepts of compartmental models including models with heterogeneous mixing of individuals and models for vector-transmitted diseases, (ii) a detailed analysis of models for important specific diseases, including tuberculosis, HIV/AIDS, influenza, Ebola virus disease, malaria, dengue fever and the Zika virus, (iii) an introduction to more advanced mathematical topics, including age structure, spatial structure, and mobility, and (iv) some challenges and opportunities for the future. There are exercises of varying degrees of difficulty, and projects leading to new research directions. For the benefit of public health professionals whose contact with mathematics may not be recent, there is an appendix covering the necessary mathematical background. There are indications which sections require a strong mathematical background so that the book can be useful for both mathematical modelers and public health professionals.
Group sequential methods answer the needs of clinical trial monitoring committees who must assess the data available at an interim analysis. These interim results may provide grounds for terminating the study-effectively reducing costs-or may benefit the general patient population by allowing early dissemination of its findings. Group sequential methods provide a means to balance the ethical and financial advantages of stopping a study early against the risk of an incorrect conclusion.
This book is devoted to the broad field of Fourier analysis and its applications to several areas of mathematics, including problems in the theory of pseudo-differential operators, partial differential equations, and time-frequency analysis. It is based on lectures given at the international conference Fourier Analysis and Pseudo-Differential Operators, June 25 30, 2012, at Aalto University, Finland. This collection of 20 refereed articles is based on selected talks and presents the latest advances in the field. The conference was a satellite meeting of the 6th European Congress of Mathematics, which took place in Krakow in July 2012; it was also the 6th meeting in the series Fourier Analysis and Partial Differential Equations. "
The first edition of Multivariate Statistical Modelling provided an extension of classical models for regression, time series, and longitudinal data to a much broader class including categorical data and smoothing concepts. Generalized linear modesl for univariate and multivariate analysis build the central concept, which for the modelling of complex data is widened to much more general modelling approaches. The primary aim of the new edition is to bring the book up-to-date and to reflect the major new developments over the past years. The authors give a detailed introductory survey of the subject based on the alaysis of real data drawn from a variety of subjects, including the biological sciences, economics, and the social sciences. Technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. The appendix serves as a reference or brief tutorial for the concepts of EM algorithm, numberical integration, MCMC and others. The topics covered inlude: Models for multi-categorial responses, model checking, semi- and nonparametric modelling, time series and longitudinal data, random effects models, state-space models, and survival analysis. In the new edition Bayesian concepts which are of growing importance in statistics are treated more extensively. The chapter on nonparametric and semiparametric generalized regression has been rewritten totally, random effects models now cover nonparametric maximum likelihood and fully Bayesian approaches, and state-space and hidden Markov models have been supplemented with an extension to models that can accommodate for spatial and spatiotemporal data. The authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, this book is ideally suited for applied statisticians, graduate students of statistics, and students and researchers with a strong interest in statistics and data analysis from econometrics, biometrics and the social sciences.
This book consists of eighteen articles in the area of `Combinatorial Matrix Theory' and `Generalized Inverses of Matrices'. Original research and expository articles presented in this publication are written by leading Mathematicians and Statisticians working in these areas. The articles contained herein are on the following general topics: `matrices in graph theory', `generalized inverses of matrices', `matrix methods in statistics' and `magic squares'. In the area of matrices and graphs, speci_c topics addressed in this volume include energy of graphs, q-analog, immanants of matrices and graph realization of product of adjacency matrices. Topics in the book from `Matrix Methods in Statistics' are, for example, the analysis of BLUE via eigenvalues of covariance matrix, copulas, error orthogonal model, and orthogonal projectors in the linear regression models. Moore-Penrose inverse of perturbed operators, reverse order law in the case of inde_nite inner product space, approximation numbers, condition numbers, idempotent matrices, semiring of nonnegative matrices, regular matrices over incline and partial order of matrices are the topics addressed under the area of theory of generalized inverses. In addition to the above traditional topics and a report on CMTGIM 2012 as an appendix, we have an article on old magic squares from India.
This book presents a unified theory of rare event simulation and the variance reduction technique known as importance sampling from the point of view of the probabilistic theory of large deviations. It allows us to view a vast assortment of simulation problems from a unified single perspective.
The emphasis of this textbook is on industrial applications of Statistical Measurement Theory. It deals with the principal issues of measurement theory, is concise and intelligibly written, and to a wide extent self-contained. Difficult theoretical issues are separated from the mainstream presentation. Each topic starts with an informal introduction followed by an example, the rigorous problem formulation, solution method, and a detailed numerical solution. Each chapter concludes with a set of exercises of increasing difficulty, mostly with solutions. The book is meant as a text for graduate students and a reference for researchers and industrial experts specializing in measurement and measurement data analysis for quality control, quality engineering and industrial process improvement using statistical methods. Knowledge of calculus and fundamental probability and statistics is required for the understanding of its contents.
Extending the well-known connection between classical linear potential theory and probability theory (through the interplay between harmonic functions and martingales) to the nonlinear case of tug-of-war games and their related partial differential equations, this unique book collects several results in this direction and puts them in an elementary perspective in a lucid and self-contained fashion.
Clustering is an important unsupervised classification technique where data points are grouped such that points that are similar in some sense belong to the same cluster. Cluster analysis is a complex problem as a variety of similarity and dissimilarity measures exist in the literature. This is the first book focused on clustering with a particular emphasis on symmetry-based measures of similarity and metaheuristic approaches. The aim is to find a suitable grouping of the input data set so that some criteria are optimized, and using this the authors frame the clustering problem as an optimization one where the objectives to be optimized may represent different characteristics such as compactness, symmetrical compactness, separation between clusters, or connectivity within a cluster. They explain the techniques in detail and outline many detailed applications in data mining, remote sensing and brain imaging, gene expression data analysis, and face detection. The book will be useful to graduate students and researchers in computer science, electrical engineering, system science, and information technology, both as a text and as a reference book. It will also be useful to researchers and practitioners in industry working on pattern recognition, data mining, soft computing, metaheuristics, bioinformatics, remote sensing, and brain imaging.
Stochastic Analysis aims to provide mathematical tools to describe and model high dimensional random systems. Such tools arise in the study of Stochastic Differential Equations and Stochastic Partial Differential Equations, Infinite Dimensional Stochastic Geometry, Random Media and Interacting Particle Systems, Super-processes, Stochastic Filtering, Mathematical Finance, etc. Stochastic Analysis has emerged as a core area of late 20th century Mathematics and is currently undergoing a rapid scientific development. The special volume "Stochastic Analysis 2010" provides a sample of the current research in the different branches of the subject. It includes the collected works of the participants at the Stochastic Analysis section of the 7th ISAAC Congress organized at Imperial College London in July 2009.
Survival analysis arises in many fields of study including medicine, biology, engineering, public health, epidemiology, and economics. This book provides a comprehensive treatment of Bayesian survival analysis. Several topics are addressed, including parametric models, semiparametric models based on prior processes, proportional and non-proportional hazards models, frailty models, cure rate models, model selection and comparison, joint models for longitudinal and survival data, models with time varying covariates, missing covariate data, design and monitoring of clinical trials, accelerated failure time models, models for multivariate survival data, and special types of hierarchical survival models. Also various censoring schemes are examined including right and interval censored data. Several additional topics are discussed, including noninformative and informative prior specificiations, computing posterior qualities of interest, Bayesian hypothesis testing, variable selection, model selection with nonnested models, model checking techniques using Bayesian diagnostic methods, and Markov chain Monte Carlo (MCMC) algorithms for sampling from the posteiror and predictive distributions. The book presents a balance between theory and applications, and for each class of models discussed, detailed examples and analyses from case studies are presented whenever possible. The applications are all essentially from the health sciences, including cancer, AIDS, and the environment. The book is intended as a graduate textbook or a reference book for a one semester course at the advanced masters or Ph.D. level. This book would be most suitable for second or third year graduate students in statistics or biostatistics. It would also serve as a useful reference book for applied or theoretical researchers as well as practitioners. Joseph G. Ibrahim is Associate Professor of Biostatistics at the Harvard School of Public Health and Dana-Farber Cancer Institute; Ming-Hui Chen is Associate Professor of Mathematical Science at Worcester Polytechnic Institute; Debajyoti Sinha is Associate Professor of Biostatistics at the Medical University of South Carolina.
This contributed volume contains fourteen papers based on selected presentations from the European Conference on Game Theory SING11-GTM 2015, held at Saint Petersburg State University in July 2015, and the Networking Games and Management workshop, held at the Karelian Research Centre of the Russian Academy of Sciences in Petrozvavodsk, Russia, also in July 2015. These papers cover a wide range of topics in game theory, including recent advances in areas with high potential for future work, as well as new developments on classical results. Some of these include A new approach to journal ranking using methods from social choice theory; A differential game of a duopoly in which two firms are competing for market share in an industry with network externalities; The impact of information propagation in the model of tax audits; A voting model in which the results of previous votes can affect the process of coalition formation in a decision-making body; The Selten-Szidarovsky technique for the analysis of Nash equilibria of games with an aggregative structure; Generalized nucleoli and generalized bargaining sets for games with restricted cooperation; Bayesian networks and games of deterrence; and A new look at the study of solutions for games in partition function form. The maturity and vitality of modern-day game theory are reflected in the new ideas, novel applications, and contributions of young researchers represented in this collection. It will be of interest to anyone doing theoretical research in game theory or working on one its numerous applications.
grams of which the objective is given by the ratio of a convex by a positive (over a convex domain) concave function. As observed by Sniedovich (Ref. [102, 103]) most of the properties of fractional pro grams could be found in other programs, given that the objective function could be written as a particular composition of functions. He called this new field C programming, standing for composite concave programming. In his seminal book on dynamic programming (Ref. [104]), Sniedovich shows how the study of such com positions can help tackling non-separable dynamic programs that otherwise would defeat solution. Barros and Frenk (Ref. [9]) developed a cutting plane algorithm capable of optimizing C-programs. More recently, this algorithm has been used by Carrizosa and Plastria to solve a global optimization problem in facility location (Ref. [16]). The distinction between global optimization problems (Ref. [54]) and generalized convex problems can sometimes be hard to establish. That is exactly the reason why so much effort has been placed into finding an exhaustive classification of the different weak forms of convexity, establishing a new definition just to satisfy some desirable property in the most general way possible. This book does not aim at all the subtleties of the different generalizations of convexity, but concentrates on the most general of them all, quasiconvex programming. Chapter 5 shows clearly where the real difficulties appear.
Symbolic data analysis is a relatively new field that provides a
range of methods for analyzing complex datasets. Standard
statistical methods do not have the power or flexibility to make
sense of very large datasets, and symbolic data analysis techniques
have been developed in order to extract knowledge from such data.
Symbolic data methods differ from that of data mining, for example,
because rather than identifying points of interest in the data,
symbolic data methods allow the user to build models of the data
and make predictions about future events.
This book gives a comprehensive introduction to the modeling of financial derivatives, covering all major asset classes (equities, commodities, interest rates and foreign exchange) and stretching from Black and Scholes' lognormal modeling to current-day research on skew and smile models. The intended reader has a solid mathematical background and is a graduate/final-year undergraduate student specializing in Mathematical Finance, or works at a financial institution such as an investment bank or a hedge fund.
Promptly growing demand for telecommunication services and information interchange has led to the fact that communication became one of the most dynamical branches of an infrastructure of a modern society. The book introduces to the bases of classical MDP theory; problems of a finding optimal CAC in models are investigated and various problems of improvement of characteristics of traditional and multimedia wireless communication networks are considered together with both classical and new methods of theory MDP which allow defining optimal strategy of access in teletraffic systems. The book will be useful to specialists in the field of telecommunication systems and also to students and post-graduate students of corresponding specialties.
This book provides a concise introduction to stochastic calculus with some of its applications in mathematical finance, engineering and the sciences. Applications in finance include pricing of financial derivatives, such as options on stocks, exotic options and interest rate options. The filtering problem and its solution is presented as an application in engineering. Population models and randomly perturbed equations of physics are given as examples of applications in biology and physics. Only a basic knowledge of calculus and probability is required for reading the book. The text takes the reader from a fairly low technical level to a sophisticated one gradually. Heuristic arguments are often given before precise results are stated, and many ideas are illustrated by worked-out examples. Exercises are provided at the end of chapters to help to test readers' understanding. This book is suitable for advanced undergraduate students, graduate students as well as research workers and practitioners.
Water engineers require knowledge of stochastic, frequency concepts, uncertainty analysis, risk assessment, and the processes that predict unexpected events. This book presents the basics of stochastic, risk and uncertainty analysis, and random sampling techniques in conjunction with straightforward examples which are solved step by step. In addition, appropriate Excel functions are included as an alternative to solve the examples, and two real case studies is presented in the last chapters of book.
This book addresses the need for a high-level analysis of unit roots and cointegration. "Time Series, Unit Roots, and Cointegration" integrates the theory of stationary sequences and issues arising in the estimation of their parameters, distributed lags, spectral density function, and cointegration. The book also includes topics that are important for understanding recent developments in the estimation and testing of cointegrated nonstationary sequences, such as Brownian motion, stochastic integration, and central limit theorems. It explores an important topic in time-series econometrics. It addresses the need for a high-level analysis of unit roots and cointegration. It is written by an excellent expositor.
Any financial asset that is openly traded has a market price. Except for extreme market conditions, market price may be more or less than a fair value. Fair value is likely to be some complicated function of the current intrinsic value of tangible or intangible assets underlying the claim and our assessment of the characteristics of the underlying assets with respect to the expected rate of growth, future dividends, volatility, and other relevant market factors. Some of these factors that affect the price can be measured at the time of a transaction with reasonably high accuracy. Most factors, however, relate to expectations about the future and to subjective issues, such as current management, corporate policies and market environment, that could affect the future financial performance of the underlying assets. Models are thus needed to describe the stochastic factors and environment, and their implementations inevitably require computational finance tools.
Presents a useful guide for applications of SEM whilst systematically demonstrating various SEM models using Mplus Focusing on the conceptual and practical aspects of Structural Equation Modeling (SEM), this book demonstrates basic concepts and examples of various SEM models, along with updates on many advanced methods, including confirmatory factor analysis (CFA) with categorical items, bifactor model, Bayesian CFA model, item response theory (IRT) model, graded response model (GRM), multiple imputation (MI) of missing values, plausible values of latent variables, moderated mediation model, Bayesian SEM, latent growth modeling (LGM) with individually varying times of observations, dynamic structural equation modeling (DSEM), residual dynamic structural equation modeling (RDSEM), testing measurement invariance of instrument with categorical variables, longitudinal latent class analysis (LLCA), latent transition analysis (LTA), growth mixture modeling (GMM) with covariates and distal outcome, manual implementation of the BCH method and the three-step method for mixture modeling, Monte Carlo simulation power analysis for various SEM models, and estimate sample size for latent class analysis (LCA) model. The statistical modeling program Mplus Version 8.2 is featured with all models updated. It provides researchers with a flexible tool that allows them to analyze data with an easy-to-use interface and graphical displays of data and analysis results. Intended as both a teaching resource and a reference guide, and written in non-mathematical terms, Structural Equation Modeling: Applications Using Mplus, 2nd edition provides step-by-step instructions of model specification, estimation, evaluation, and modification. Chapters cover: Confirmatory Factor Analysis (CFA); Structural Equation Models (SEM); SEM for Longitudinal Data; Multi-Group Models; Mixture Models; and Power Analysis and Sample Size Estimate for SEM. Presents a useful reference guide for applications of SEM while systematically demonstrating various advanced SEM models Discusses and demonstrates various SEM models using both cross-sectional and longitudinal data with both continuous and categorical outcomes Provides step-by-step instructions of model specification and estimation, as well as detailed interpretation of Mplus results using real data sets Introduces different methods for sample size estimate and statistical power analysis for SEM Structural Equation Modeling is an excellent book for researchers and graduate students of SEM who want to understand the theory and learn how to build their own SEM models using Mplus.
Over the past decades, although stochastic system control has been
studied intensively within the field of control engineering, all
the modelling and control strategies developed so far have
concentrated on the performance of one or two output properties of
the system. such as minimum variance control and mean value
control. The general assumption used in the formulation of
modelling and control strategies is that the distribution of the
random signals involved is Gaussian. In this book, a set of new
approaches for the control of the output probability density
function of stochastic dynamic systems (those subjected to any
bounded random inputs), has been developed. In this context, the
purpose of control system design becomes the selection of a control
signal that makes the shape of the system outputs p.d.f. as close
as possible to a given distribution. The book contains material on
the subjects of: - Control of single-input single-output and
multiple-input multiple-output stochastic systems; - Stable
adaptive control of stochastic distributions; - Model reference
adaptive control; - Control of nonlinear dynamic stochastic
systems; - Condition monitoring of bounded stochastic
distributions; - Control algorithm design; - Singular stochastic
systems.
Probabilistic and Statistical Methods in Computer Science |
You may like...
Conceptual Modeling Perspectives
Jordi Cabot, Cristina Gomez, …
Hardcover
Nonlinear Partial Differential Equations…
Garth Baker, Alexandre S. Freire
Hardcover
R2,400
Discovery Miles 24 000
Dynamics in Logistics - Third…
Hans-Joerg Kreowski, Bernd Scholz-Reiter, …
Hardcover
R5,251
Discovery Miles 52 510
Web Service Implementation and…
Hye-Young Paik, Angel Lagares Lemos, …
Hardcover
R1,920
Discovery Miles 19 200
Almost Automorphic and Almost Periodic…
Gaston M N'Gu er ekata
Hardcover
R2,728
Discovery Miles 27 280
Big Data Governance and Perspectives in…
Sheryl Kruger Strydom, Moses Strydom
Hardcover
R4,886
Discovery Miles 48 860
|