![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Probability & statistics
Recent applications of evolutionary game theory in the merging fields of the mathematical and social sciences are brilliantly portrayed in this book, which highlights social physics and shows how the approach can help to quantitatively model complex human-environmental-social systems. First, readers are introduced to the fundamentals of evolutionary game theory. The two-player, two-strategy game, or the 2 x 2 game, is presented as an archetype to help understand the difficulty of cooperating for survival against defection in common social contexts. Subsequently, the book explains the theoretical background of the multi-player, two-strategy game, which may be more widely applicable than the 2 x 2 game for social dilemmas. The latest applications of 2 x 2 games are also discussed to explore how integrated reciprocity mechanisms can solve social dilemmas. In turn, the book describes two practical areas in which evolutionary game theory has been applied. The first concerns traffic flow analysis. In conventional interpretations, traffic flow can be understood by means of fluid dynamics, in which the flow of vehicles is evaluated as a continuum body. Such a simple idea, however, does not work well in reality, particularly if a driver's decision-making process is considered. Various dilemmas involve complex structures that depend primarily on traffic density, a revelation that should help establish a practical solution for reducing traffic congestion. Second, the book provides keen insights into how powerful evolutionary game theory can be in the context of epidemiology. Both approaches, quasi-analytical and multi-agent simulation, can clarify how an infectious disease such as seasonal influenza spreads across a complex social network, which is significantly affected by the public attitude toward vaccination. A methodology is proposed for the optimum design of a public vaccination policy incorporating subsidies to efficiently increase vaccination coverage while minimizing the social cost.
This thesis develops a systematic, data-based dynamic modeling framework for industrial processes in keeping with the slowness principle. Using said framework as a point of departure, it then proposes novel strategies for dealing with control monitoring and quality prediction problems in industrial production contexts. The thesis reveals the slowly varying nature of industrial production processes under feedback control, and integrates it with process data analytics to offer powerful prior knowledge that gives rise to statistical methods tailored to industrial data. It addresses several issues of immediate interest in industrial practice, including process monitoring, control performance assessment and diagnosis, monitoring system design, and product quality prediction. In particular, it proposes a holistic and pragmatic design framework for industrial monitoring systems, which delivers effective elimination of false alarms, as well as intelligent self-running by fully utilizing the information underlying the data. One of the strengths of this thesis is its integration of insights from statistics, machine learning, control theory and engineering to provide a new scheme for industrial process modeling in the era of big data.
This book generalizes and extends the available theory in robust and decentralized hypothesis testing. In particular, it presents a robust test for modeling errors which is independent from the assumptions that a sufficiently large number of samples is available, and that the distance is the KL-divergence. Here, the distance can be chosen from a much general model, which includes the KL-divergence as a very special case. This is then extended by various means. A minimax robust test that is robust against both outliers as well as modeling errors is presented. Minimax robustness properties of the given tests are also explicitly proven for fixed sample size and sequential probability ratio tests. The theory of robust detection is extended to robust estimation and the theory of robust distributed detection is extended to classes of distributions, which are not necessarily stochastically bounded. It is shown that the quantization functions for the decision rules can also be chosen as non-monotone. Finally, the book describes the derivation of theoretical bounds in minimax decentralized hypothesis testing, which have not yet been known. As a timely report on the state-of-the-art in robust hypothesis testing, this book is mainly intended for postgraduates and researchers in the field of electrical and electronic engineering, statistics and applied probability. Moreover, it may be of interest for students and researchers working in the field of classification, pattern recognition and cognitive radio.
This book presents state-of-the-art probabilistic methods for the reliability analysis and design of engineering products and processes. It seeks to facilitate practical application of probabilistic analysis and design by providing an authoritative, in-depth, and practical description of what probabilistic analysis and design is and how it can be implemented. The text is packed with many practical engineering examples (e.g., electric power transmission systems, aircraft power generating systems, and mechanical transmission systems) and exercise problems. It is an up-to-date, fully illustrated reference suitable for both undergraduate and graduate engineering students, researchers, and professional engineers who are interested in exploring the fundamentals, implementation, and applications of probabilistic analysis and design methods.
This book shows how to develop efficient quantitative methods to characterize neural data and extra information that reveals underlying dynamics and neurophysiological mechanisms. Written by active experts in the field, it contains an exchange of innovative ideas among researchers at both computational and experimental ends, as well as those at the interface. Authors discuss research challenges and new directions in emerging areas with two goals in mind: to collect recent advances in statistics, signal processing, modeling, and control methods in neuroscience; and to welcome and foster innovative or cross-disciplinary ideas along this line of research and discuss important research issues in neural data analysis. Making use of both tutorial and review materials, this book is written for neural, electrical, and biomedical engineers; computational neuroscientists; statisticians; computer scientists; and clinical engineers.
This book is a selection of peer-reviewed contributions presented at the third Bayesian Young Statisticians Meeting, BAYSM 2016, Florence, Italy, June 19-21. The meeting provided a unique opportunity for young researchers, M.S. students, Ph.D. students, and postdocs dealing with Bayesian statistics to connect with the Bayesian community at large, to exchange ideas, and to network with others working in the same field. The contributions develop and apply Bayesian methods in a variety of fields, ranging from the traditional (e.g., biostatistics and reliability) to the most innovative ones (e.g., big data and networks).
This book examines statistical techniques that are critically important to Chemistry, Manufacturing, and Control (CMC) activities. Statistical methods are presented with a focus on applications unique to the CMC in the pharmaceutical industry. The target audience consists of statisticians and other scientists who are responsible for performing statistical analyses within a CMC environment. Basic statistical concepts are addressed in Chapter 2 followed by applications to specific topics related to development and manufacturing. The mathematical level assumes an elementary understanding of statistical methods. The ability to use Excel or statistical packages such as Minitab, JMP, SAS, or R will provide more value to the reader. The motivation for this book came from an American Association of Pharmaceutical Scientists (AAPS) short course on statistical methods applied to CMC applications presented by four of the authors. One of the course participants asked us for a good reference book, and the only book recommended was written over 20 years ago by Chow and Liu (1995). We agreed that a more recent book would serve a need in our industry. Since we began this project, an edited book has been published on the same topic by Zhang (2016). The chapters in Zhang discuss statistical methods for CMC as well as drug discovery and nonclinical development. We believe our book complements Zhang by providing more detailed statistical analyses and examples.
The monograph compares two approaches that describe the statistical stability phenomenon - one proposed by the probability theory that ignores violations of statistical stability and another proposed by the theory of hyper-random phenomena that takes these violations into account. There are five parts. The first describes the phenomenon of statistical stability. The second outlines the mathematical foundations of probability theory. The third develops methods for detecting violations of statistical stability and presents the results of experimental research on actual processes of different physical nature that demonstrate the violations of statistical stability over broad observation intervals. The fourth part outlines the mathematical foundations of the theory of hyper-random phenomena. The fifth part discusses the problem of how to provide an adequate description of the world. The monograph should be interest to a wide readership: from university students on a first course majoring in physics, engineering, and mathematics to engineers, post-graduate students, and scientists carrying out research on the statistical laws of natural physical phenomena, developing and using statistical methods for high-precision measurement, prediction, and signal processing over broad observation intervals. To read the book, it is sufficient to be familiar with a standard first university course on mathematics.
This is the second of a two-part guide to quantitative analysis using the IBM SPSS Statistics software package; this volume focuses on multivariate statistical methods and advanced forecasting techniques. More often than not, regression models involve more than one independent variable. For example, forecasting methods are commonly applied to aggregates such as inflation rates, unemployment, exchange rates, etc., that have complex relationships with determining variables. This book introduces multivariate regression models and provides examples to help understand theory underpinning the model. The book presents the fundamentals of multivariate regression and then moves on to examine several related techniques that have application in business-orientated fields such as logistic and multinomial regression. Forecasting tools such as the Box-Jenkins approach to time series modeling are introduced, as well as exponential smoothing and naive techniques. This part also covers hot topics such as Factor Analysis, Discriminant Analysis and Multidimensional Scaling (MDS).
This book is a collection of selected papers presented at the consecutively held international conferences on "Game Theory and Networks", organized by the Department of Mathematics, Dibrugarh University, India, in collaboration with the Economics Department of Queen's University, Belfast, UK, during September 6-9, 2019 and September, 13-15 2018. The book includes chapters on network measures and network formation, application of network theory to contagion, biological data and finance and macroeconomics as expository articles. The book also contains chapters on fair allocation in the context of queuing, rationing and cooperative games with transferable utilities for engaged researchers. A few survey chapters on non-cooperative game theory, evolutionary game theory, mechanism design and social choice theory are also incorporated to cater to the needs of the beginners in the field. This book discusses the use of game theoretic tools and network models across disciplines: mathematics, statistics, economics, computer science, political science, sociology and psychology. It aims at providing a suitable learning experience to beginners on the basics of cooperative games, networks and mechanism design, as well as recent developments to research scholars having the basic knowledge of these topics.
This research monograph on circular data analysis covers some recent advances in the field, besides providing a brief introduction to, and a review of, existing methods and models. The primary focus is on recent research into topics such as change-point problems, predictive distributions, circular correlation and regression, etc. An important feature of this work is the S-plus subroutines provided for analyzing actual data sets. Coupled with the discussion of new theoretical research, the book should benefit both the researcher and the practitioner.
Provides the necessary skills to solve problems in mathematical statistics through theory, concrete examples, and exercises With a clear and detailed approach to the fundamentals of statistical theory, Examples and Problems in Mathematical Statistics uniquely bridges the gap between theory andapplication and presents numerous problem-solving examples that illustrate the relatednotations and proven results. Written by an established authority in probability and mathematical statistics, each chapter begins with a theoretical presentation to introduce both the topic and the important results in an effort to aid in overall comprehension. Examples are then provided, followed by problems, and finally, solutions to some of the earlier problems. In addition, Examples and Problems in Mathematical Statistics features: * Over 160 practical and interesting real-world examples from a variety of fields including engineering, mathematics, and statistics to help readers become proficient in theoretical problem solving * More than 430 unique exercises with select solutions * Key statistical inference topics, such as probability theory, statistical distributions, sufficient statistics, information in samples, testing statistical hypotheses, statistical estimation, confidence and tolerance intervals, large sample theory, and Bayesian analysis Recommended for graduate-level courses in probability and statistical inference, Examples and Problems in Mathematical Statistics is also an ideal reference for applied statisticians and researchers.
This book presents a systematic and comprehensive treatment of various prior processes that have been developed over the past four decades for dealing with Bayesian approach to solving selected nonparametric inference problems. This revised edition has been substantially expanded to reflect the current interest in this area. After an overview of different prior processes, it examines the now pre-eminent Dirichlet process and its variants including hierarchical processes, then addresses new processes such as dependent Dirichlet, local Dirichlet, time-varying and spatial processes, all of which exploit the countable mixture representation of the Dirichlet process. It subsequently discusses various neutral to right type processes, including gamma and extended gamma, beta and beta-Stacy processes, and then describes the Chinese Restaurant, Indian Buffet and infinite gamma-Poisson processes, which prove to be very useful in areas such as machine learning, information retrieval and featural modeling. Tailfree and Polya tree and their extensions form a separate chapter, while the last two chapters present the Bayesian solutions to certain estimation problems pertaining to the distribution function and its functional based on complete data as well as right censored data. Because of the conjugacy property of some of these processes, most solutions are presented in closed form. However, the current interest in modeling and treating large-scale and complex data also poses a problem - the posterior distribution, which is essential to Bayesian analysis, is invariably not in a closed form, making it necessary to resort to simulation. Accordingly, the book also introduces several computational procedures, such as the Gibbs sampler, Blocked Gibbs sampler and slice sampling, highlighting essential steps of algorithms while discussing specific models. In addition, it features crucial steps of proofs and derivations, explains the relationships between different processes and provides further clarifications to promote a deeper understanding. Lastly, it includes a comprehensive list of references, equipping readers to explore further on their own.
This book presents new efficient methods for optimization in realistic large-scale, multi-agent systems. These methods do not require the agents to have the full information about the system, but instead allow them to make their local decisions based only on the local information, possibly obtained during communication with their local neighbors. The book, primarily aimed at researchers in optimization and control, considers three different information settings in multi-agent systems: oracle-based, communication-based, and payoff-based. For each of these information types, an efficient optimization algorithm is developed, which leads the system to an optimal state. The optimization problems are set without such restrictive assumptions as convexity of the objective functions, complicated communication topologies, closed-form expressions for costs and utilities, and finiteness of the system's state space.
This volume presents some of the most influential papers published by Rabi N. Bhattacharya, along with commentaries from international experts, demonstrating his knowledge, insight, and influence in the field of probability and its applications. For more than three decades, Bhattacharya has made significant contributions in areas ranging from theoretical statistics via analytical probability theory, Markov processes, and random dynamics to applied topics in statistics, economics, and geophysics. Selected reprints of Bhattacharya's papers are divided into three sections: Modes of Approximation, Large Times for Markov Processes, and Stochastic Foundations in Applied Sciences. The accompanying articles by the contributing authors not only help to position his work in the context of other achievements, but also provide a unique assessment of the state of their individual fields, both historically and for the next generation of researchers. Rabi N. Bhattacharya: Selected Papers will be a valuable resource for young researchers entering the diverse areas of study to which Bhattacharya has contributed. Established researchers will also appreciate this work as an account of both past and present developments and challenges for the future.
The book provides a comprehensive introduction and a novel mathematical foundation of the field of information geometry with complete proofs and detailed background material on measure theory, Riemannian geometry and Banach space theory. Parametrised measure models are defined as fundamental geometric objects, which can be both finite or infinite dimensional. Based on these models, canonical tensor fields are introduced and further studied, including the Fisher metric and the Amari-Chentsov tensor, and embeddings of statistical manifolds are investigated. This novel foundation then leads to application highlights, such as generalizations and extensions of the classical uniqueness result of Chentsov or the Cramer-Rao inequality. Additionally, several new application fields of information geometry are highlighted, for instance hierarchical and graphical models, complexity theory, population genetics, or Markov Chain Monte Carlo. The book will be of interest to mathematicians who are interested in geometry, information theory, or the foundations of statistics, to statisticians as well as to scientists interested in the mathematical foundations of complex systems.
This volume presents recent advances in the field of matrix analysis based on contributions at the MAT-TRIAD 2015 conference. Topics covered include interval linear algebra and computational complexity, Birkhoff polynomial basis, tensors, graphs, linear pencils, K-theory and statistic inference, showing the ubiquity of matrices in different mathematical areas. With a particular focus on matrix and operator theory, statistical models and computation, the International Conference on Matrix Analysis and its Applications 2015, held in Coimbra, Portugal, was the sixth in a series of conferences. Applied and Computational Matrix Analysis will appeal to graduate students and researchers in theoretical and applied mathematics, physics and engineering who are seeking an overview of recent problems and methods in matrix analysis.
This monograph discusses statistics and risk estimates applied to radiation damage under the presence of measurement errors. The first part covers nonlinear measurement error models, with a particular emphasis on efficiency of regression parameter estimators. In the second part, risk estimation in models with measurement errors is considered. Efficiency of the methods presented is verified using data from radio-epidemiological studies. Contents: Part I - Estimation in regression models with errors in covariates Measurement error models Linear models with classical error Polynomial regression with known variance of classical error Nonlinear and generalized linear models Part II Radiation risk estimation under uncertainty in exposure doses Overview of risk models realized in program package EPICURE Estimation of radiation risk under classical or Berkson multiplicative error in exposure doses Radiation risk estimation for persons exposed by radioiodine as a result of the Chornobyl accident Elements of estimating equations theory Consistency of efficient methods Efficient SIMEX method as a combination of the SIMEX method and the corrected score method Application of regression calibration in the model with additive error in exposure doses
This book discusses examples in parametric inference with R. Combining basic theory with modern approaches, it presents the latest developments and trends in statistical inference for students who do not have an advanced mathematical and statistical background. The topics discussed in the book are fundamental and common to many fields of statistical inference and thus serve as a point of departure for in-depth study. The book is divided into eight chapters: Chapter 1 provides an overview of topics on sufficiency and completeness, while Chapter 2 briefly discusses unbiased estimation. Chapter 3 focuses on the study of moments and maximum likelihood estimators, and Chapter 4 presents bounds for the variance. In Chapter 5, topics on consistent estimator are discussed. Chapter 6 discusses Bayes, while Chapter 7 studies some more powerful tests. Lastly, Chapter 8 examines unbiased and other tests. Senior undergraduate and graduate students in statistics and mathematics, and those who have taken an introductory course in probability, will greatly benefit from this book. Students are expected to know matrix algebra, calculus, probability and distribution theory before beginning this course. Presenting a wealth of relevant solved and unsolved problems, the book offers an excellent tool for teachers and instructors who can assign homework problems from the exercises, and students will find the solved examples hugely beneficial in solving the exercise problems.
This book provides engineers with focused treatment of the mathematics needed to understand probability, random variables, and stochastic processes, which are essential mathematical disciplines used in communications engineering. The author explains the basic concepts of these topics as plainly as possible so that people with no in-depth knowledge of these mathematical topics can better appreciate their applications in real problems. Applications examples are drawn from various areas of communications. If a reader is interested in understanding probability and stochastic processes that are specifically important for communications networks and systems, this book serves his/her need.
The stability analysis of stochastic models for telecommunication systems is an intensively studied topic. The analysis is, as a rule, a difficult problem requiring a refined mathematical technique, especially when one endeavors beyond the framework of Markovian models. The primary purpose of this book is to present, in a unified way, research into the stability analysis of a wide variety of regenerative queueing systems. It describes the theoretical foundations of this method, and then shows how it works with particular models, both classic ones as well as more recent models that have received attention. The focus lies on an in-depth and insightful mathematical explanation of the regenerative stability analysis method. The unique volume can serve as a textbook for students working in these and related scientific areas. The material is also of interest to engineers working in telecommunications field, who may be faced with the problem of stability of queueing systems.
Praise for the Second Edition "An essential desktop reference book ...it should definitely be on your bookshelf." Technometrics A thoroughly updated book, Methods and Applications of Linear Models: Regression and the Analysis of Variance, Third Edition features innovative approaches to understanding and working with models and theory of linear regression. The Third Edition provides readers with the necessary theoretical concepts, which are presented using intuitive ideas rather than complicated proofs, to describe the inference that is appropriate for the methods being discussed. The book presents a unique discussion that combines coverage of mathematical theory of linear models with analysis of variance models, providing readers with a comprehensive understanding of both the theoretical and technical aspects of linear models. With a new focus on fixed effects models, Methods and Applications of Linear Models: Regression and the Analysis of Variance, Third Edition also features: * Newly added topics including least squares, the cell means model, and graphical inspection of data in the AVE method * Frequent conceptual and numerical examples for clarifying the statistical analyses and demonstrating potential pitfalls * Graphics and computations developed using JMP(R) software to accompany the concepts and techniques presented * Numerous exercises presented to test readers and deepen their understanding of the material An ideal book for courses on linear models and linear regression at the undergraduate and graduate levels, the Third Edition of Methods and Applications of Linear Models: Regression and the Analysis of Variance is also a valuable reference for applied statisticians and researchers who utilize linear model methodology.
This book reports on an in-depth study of fuzzy time series (FTS) modeling. It reviews and summarizes previous research work in FTS modeling and also provides a brief introduction to other soft-computing techniques, such as artificial neural networks (ANNs), rough sets (RS) and evolutionary computing (EC), focusing on how these techniques can be integrated into different phases of the FTS modeling approach. In particular, the book describes novel methods resulting from the hybridization of FTS modeling approaches with neural networks and particle swarm optimization. It also demonstrates how a new ANN-based model can be successfully applied in the context of predicting Indian summer monsoon rainfall. Thanks to its easy-to-read style and the clear explanations of the models, the book can be used as a concise yet comprehensive reference guide to fuzzy time series modeling, and will be valuable not only for graduate students, but also for researchers and professionals working for academic, business and government organizations. |
![]() ![]() You may like...
Mathematical Statistics with…
William Mendenhall, Dennis Wackerly, …
Paperback
Stats: Data and Models, Global Edition…
Richard De Veaux, Paul Velleman, …
Digital product license key
R1,671
Discovery Miles 16 710
Time Series Analysis - With Applications…
Jonathan D. Cryer, Kung-Sik Chan
Hardcover
R2,795
Discovery Miles 27 950
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
Statistics for Management and Economics
Gerald Keller, Nicoleta Gaciu
Paperback
Probability - An Introduction
Geoffrey Grimmett, Dominic Welsh
Hardcover
R4,464
Discovery Miles 44 640
Pearson Edexcel International A Level…
Joe Skrakowski, Harry Smith
Paperback
R1,004
Discovery Miles 10 040
|