![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Probability & statistics
Introduction to Probability, Second Edition, discusses probability theory in a mathematically rigorous, yet accessible way. This one-semester basic probability textbook explains important concepts of probability while providing useful exercises and examples of real world applications for students to consider. This edition demonstrates the applicability of probability to many human activities with examples and illustrations. After introducing fundamental probability concepts, the book proceeds to topics including conditional probability and independence; numerical characteristics of a random variable; special distributions; joint probability density function of two random variables and related quantities; joint moment generating function, covariance and correlation coefficient of two random variables; transformation of random variables; the Weak Law of Large Numbers; the Central Limit Theorem; and statistical inference. Each section provides relevant proofs, followed by exercises and useful hints. Answers to even-numbered exercises are given and detailed answers to all exercises are available to instructors on the book companion site. This book will be of interest to upper level undergraduate students and graduate level students in statistics, mathematics, engineering, computer science, operations research, actuarial science, biological sciences, economics, physics, and some of the social sciences.
This book describes methods for statistical brain imaging data analysis from both the perspective of methodology and from the standpoint of application for software implementation in neuroscience research. These include those both commonly used (traditional established) and state of the art methods. The former is easier to do due to the availability of appropriate software. To understand the methods it is necessary to have some mathematical knowledge which is explained in the book with the help of figures and descriptions of the theory behind the software. In addition, the book includes numerical examples to guide readers on the working of existing popular software. The use of mathematics is reduced and simplified for non-experts using established methods, which also helps in avoiding mistakes in application and interpretation. Finally, the book enables the reader to understand and conceptualize the overall flow of brain imaging data analysis, particularly for statisticians and data-scientists unfamiliar with this area. The state of the art method described in the book has a multivariate approach developed by the authors' team. Since brain imaging data, generally, has a highly correlated and complex structure with large amounts of data, categorized into big data, the multivariate approach can be used as dimension reduction by following the application of statistical methods. The R package for most of the methods described is provided in the book. Understanding the background theory is helpful in implementing the software for original and creative applications and for an unbiased interpretation of the output. The book also explains new methods in a conceptual manner. These methodologies and packages are commonly applied in life science data analysis. Advanced methods to obtain novel insights are introduced, thereby encouraging the development of new methods and applications for research into medicine as a neuroscience.
Understand and utilize the latest developments in Weibull inferential methods While the Weibull distribution is widely used in science and engineering, most engineers do not have the necessary statistical training to implement the methodology effectively. "Using the Weibull Distribution: Reliability, Modeling, " "and Inference "fills a gap in the current literature on the topic, introducing a self-contained presentation of the probabilistic basis for the methodology while providing powerful techniques for extracting information from data. The author explains the use of the Weibull distribution and its statistical and probabilistic basis, providing a wealth of material that is not available in the current literature. The book begins by outlining the fundamental probability and statistical concepts that serve as a foundation for subsequent topics of coverage, including: - Optimum burn-in, age and block replacement, warranties and renewal theory - Exact inference in Weibull regression - Goodness of fit testing and distinguishing the Weibull from the lognormal - Inference for the Three Parameter Weibull Throughout the book, a wealth of real-world examples showcases the discussed topics and each chapter concludes with a set of exercises, allowing readers to test their understanding of the presented material. In addition, a related website features the author's own software for implementing the discussed analyses along with a set of modules written in Mathcad(R), and additional graphical interface software for performing simulations. With its numerous hands-on examples, exercises, and software applications, "Using the Weibull Distribution "is an excellent book for courses on quality control and reliability" "engineering at the upper-undergraduate and graduate levels. The book also serves as a" "valuable reference for engineers, scientists, and business analysts who gather and interpret" "data that follows the Weibull distribution
This book discusses diverse concepts and notions - and their applications - concerning probability and random variables at the intermediate to advanced level. It explains basic concepts and results in a clearer and more complete manner than the extant literature. In addition to a range of concepts and notions concerning probability and random variables, the coverage includes a number of key advanced concepts in mathematics. Readers will also find unique results on e.g. the explicit general formula of joint moments and the expected values of nonlinear functions for normal random vectors. In addition, interesting applications of the step and impulse functions in discussions on random vectors are presented. Thanks to a wealth of examples and a total of 330 practice problems of varying difficulty, readers will have the opportunity to significantly expand their knowledge and skills. The book is rounded out by an extensive index, allowing readers to quickly and easily find what they are looking for. Given its scope, the book will appeal to all readers with a basic grasp of probability and random variables who are looking to go one step further. It also offers a valuable reference guide for experienced scholars and professionals, helping them review and refine their expertise.
Statistical learning and analysis techniques have become extremely important today, given the tremendous growth in the size of heterogeneous data collections and the ability to process it even from physically distant locations. Recent advances made in the field of machine learning provide a strong framework for robust learning from the diverse corpora and continue to impact a variety of research problems across multiple scientific disciplines. The aim of this handbook is to familiarize beginners as well as experts with some of the recent techniques in this field. The Handbook is divided in two sections: Theory and
Applications, covering machine learning, data analytics,
biometrics, document recognition and security. emphasis on applications-oriented techniques
The field of statistics not only affects all areas of scientific activity, but also many other matters such as public policy. It is branching rapidly into so many different subjects that a series of handbooks is the only way of comprehensively presenting the various aspects of statistical methodology, applications, and recent developments. The "Handbook of Statistics" is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with Volume 30 dealing with time series. The series is addressed to the entire community of statisticians and scientists in various disciplines who use statistical methodology in their work. At the same time, special emphasis is placed on applications-oriented techniques, with the applied statistician in mind as the primary audience. Comprehensively presents the various aspects of statistical methodologyDiscusses a wide variety of diverse applications and recent developmentsContributors are internationally renowened experts in their respective areas
Students in the sciences, economics, social sciences, and medicine take an introductory statistics course. And yet statistics can be notoriously difficult for instructors to teach and for students to learn. To help overcome these challenges, Gelman and Nolan have put together this fascinating and thought-provoking book. Based on years of teaching experience the book provides a wealth of demonstrations, activities, examples, and projects that involve active student participation. Part I of the book presents a large selection of activities for introductory statistics courses and has chapters such as 'First week of class'- with exercises to break the ice and get students talking; then descriptive statistics, graphics, linear regression, data collection (sampling and experimentation), probability, inference, and statistical communication. Part II gives tips on what works and what doesn't, how to set up effective demonstrations, how to encourage students to participate in class and to work effectively in group projects. Course plans for introductory statistics, statistics for social scientists, and communication and graphics are provided. Part III presents material for more advanced courses on topics such as decision theory, Bayesian statistics, sampling, and data science.
The use of Bayesian statistics has grown significantly in recent years, and will undoubtedly continue to do so. Applied Bayesian Modelling is the follow-up to the author’s best selling book, Bayesian Statistical Modelling, and focuses on the potential applications of Bayesian techniques in a wide range of important topics in the social and health sciences. The applications are illustrated through many real-life examples and software implementation in WINBUGS – a popular software package that offers a simplified and flexible approach to statistical modelling. The book gives detailed explanations for each example – explaining fully the choice of model for each particular problem. The book · Provides a broad and comprehensive account of applied Bayesian modelling. · Describes a variety of model assessment methods and the flexibility of Bayesian prior specifications. · Covers many application areas, including panel data models, structural equation and other multivariate structure models, spatial analysis, survival analysis and epidemiology. · Provides detailed worked examples in WINBUGS to illustrate the practical application of the techniques described. All WINBUGS programs are available from an ftp site. The book provides a good introduction to Bayesian modelling and data analysis for a wide range of people involved in applied statistical analysis, including researchers and students from statistics, and the health and social sciences. The wealth of examples makes this book an ideal reference for anyone involved in statistical modelling and analysis.
This accessible reference includes selected contributions from Bayesian Thinking - Modeling and Computation, Volume 25 in the Handbook of Statistics Series, with a focus on key methodologies and applications for Bayesian models and computation. It describes parametric and nonparametric Bayesian methods for modeling, and how to use modern computational methods to summarize inferences using simulation. The book covers a wide range of topics including objective and subjective Bayesian inferences, with a variety of applications in modeling categorical, survival, spatial, spatiotemporal, Epidemiological, small area and micro array data. Aids critical thinking on causal effects
Chance rules our daily lives in many different ways. From the outcomes of the lottery to the outcomes of medical tests, from the basketball court to the court of law. The ways of chance are capricious. Bizarre things happen all the time. Nevertheless, chance has a logic of its own. It obeys the rules of probability. But if you open a standard book on probability, you may very well feel far removed from everyday life. Abstract formulas and mathematical symbols stare back at you with almost every turn of the page.This book introduces you to the logic of chance without the use of mathematical formulas or symbols. In Part One, you will meet the fascinating pioneers of the mathematics of probability, including Galileo Galilei and Blaise Pascal. Their stories will introduce you, step by step, to the basics of probability. In Part Two, various examples in all areas of daily life will show you how chance defies our expectations time and again. But armed with the basic rules of probability and a good dose of inventiveness, you will be able to unravel the counter-intuitive logic of chance.
This book shows that research contributions from different fields-finance, economics, computer sciences, and physics-can provide useful insights into key issues in financial and cryptocurrency markets. Presenting the latest empirical and theoretical advances, it helps readers gain a better understanding of financial markets and cryptocurrencies. Bitcoin was the first cryptocurrency to use a peer-to-peer network to prevent double-spending and to control its issue without the need for a central authority, and it has attracted wide public attention since its introduction. In recent years, the academic community has also started gaining interest in cyptocurrencies, and research in the field has grown rapidly. This book presents is a collection of the latest work on cryptocurrency markets and the properties of those markets. This book will appeal to graduate students and researchers from disciplines such as finance, economics, financial engineering, computer science, physics and applied mathematics working in the field of financial markets, including cryptocurrency markets.
This new handbook contains the most comprehensive account of sample surveys theory and practice to date. It is a second volume on sample surveys, with the goal of updating and extending the sampling volume published as volume 6 of the Handbook of Statistics in 1988. The present handbook is divided into two volumes (29A and 29B), with a total of 41 chapters, covering current developments in almost every aspect of sample surveys, with references to important contributions and available software. It can serve as a self contained guide to researchers and practitioners, with appropriate balance between theory and real life applications. Each of the two volumes is divided into three parts, with each
part preceded by an introduction, summarizing the main developments
in the areas covered in that part. Volume29A deals with methods of
sample selection and data processing, with the later including
editing and imputation, handling of outliers and measurement
errors, and methods of disclosure control. The volume contains also
a large variety of applications in specialized areas such as
household and business surveys, marketing research, opinion polls
and censuses. Volume29B is concerned with inference, distinguishing
between design-based and model-based methods and focusing on
specific problems such as small area estimation, analysis of
longitudinal data, categorical data analysis and inference on
distribution functions. The volume contains also chapters dealing
with case-control studies, asymptotic properties of estimators and
decision theoretic aspects.
This new handbook contains the most comprehensive account of sample surveys theory and practice to date. It is a second volume on sample surveys, with the goal of updating and extending the sampling volume published as volume 6 of the Handbook of Statistics in 1988. The present handbook is divided into two volumes (29A and 29B), with a total of 41 chapters, covering current developments in almost every aspect of sample surveys, with references to important contributions and available software. It can serve as a self contained guide to researchers and practitioners, with appropriate balance between theory and real life applications. Each of the two volumes is divided into three parts, with each
part preceded by an introduction, summarizing the main developments
in the areas covered in that part. Volume 1 deals with methods of
sample selection and data processing, with the later including
editing and imputation, handling of outliers and measurement
errors, and methods of disclosure control. The volume contains also
a large variety of applications in specialized areas such as
household and business surveys, marketing research, opinion polls
and censuses. Volume 2 is concerned with inference, distinguishing
between design-based and model-based methods and focusing on
specific problems such as small area estimation, analysis of
longitudinal data, categorical data analysis and inference on
distribution functions. The volume contains also chapters dealing
with case-control studies, asymptotic properties of estimators and
decision theoretic aspects. Comprehensive account of recent developments in sample survey theory and practice Covers a wide variety of diverse applications Comprehensive bibliography
Congruences are ubiquitous in computer science, engineering, mathematics, and related areas. Developing techniques for finding (the number of) solutions of congruences is an important problem. But there are many scenarios in which we are interested in only a subset of the solutions; in other words, there are some restrictions. What do we know about these restricted congruences, their solutions, and applications? This book introduces the tools that are needed when working on restricted congruences and then systematically studies a variety of restricted congruences. Restricted Congruences in Computing defines several types of restricted congruence, obtains explicit formulae for the number of their solutions using a wide range of tools and techniques, and discusses their applications in cryptography, information security, information theory, coding theory, string theory, quantum field theory, parallel computing, artificial intelligence, computational biology, discrete mathematics, number theory, and more. This is the first book devoted to restricted congruences and their applications. It will be of interest to graduate students and researchers across computer science, electrical engineering, and mathematics.
Bayesian analysis has developed rapidly in applications in the last
two decades and research in Bayesian methods remains dynamic and
fast-growing. Dramatic advances in modelling concepts and
computational technologies now enable routine application of
Bayesian analysis using increasingly realistic stochastic models,
and this drives the adoption of Bayesian approaches in many areas
of science, technology, commerce, and industry.
|
You may like...
Our Discovery Island Level 3 Activity…
Debbie Peters, Anne Feunteun
Paperback
R475
Discovery Miles 4 750
Java How to Program, Late Objects…
Paul Deitel, Harvey Deitel
Paperback
Bayesian Inference - With Ecological…
William A Link, Richard J. Barker
Hardcover
R1,436
Discovery Miles 14 360
In and Out of Equilibrium - Probability…
Vladas Sidoravicius
Hardcover
R1,666
Discovery Miles 16 660
Maximum Entropy and Bayesian Methods…
G. Erickson, Joshua T. Rychert, …
Hardcover
R4,177
Discovery Miles 41 770
Economics with Heterogeneous Interacting…
Alessandro Caiani, Alberto Russo, …
Hardcover
R3,860
Discovery Miles 38 600
Graphene and Its Derivatives - Synthesis…
Ishaq Ahmad, Fabian I. Ezema
Hardcover
R2,557
Discovery Miles 25 570
|