![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Probability & statistics
Finance and insurance companies are facing a wide range of parametric statistical problems. Statistical experiments generated by a sample of independent and identically distributed random variables are frequent and well understood, especially those consisting of probability measures of an exponential type. However, the aforementioned applications also offer non-classical experiments implying observation samples of independent but not identically distributed random variables or even dependent random variables. Three examples of such experiments are treated in this book. First, the Generalized Linear Models are studied. They extend the standard regression model to non-Gaussian distributions. Statistical experiments with Markov chains are considered next. Finally, various statistical experiments generated by fractional Gaussian noise are also described. In this book, asymptotic properties of several sequences of estimators are detailed. The notion of asymptotical efficiency is discussed for the different statistical experiments considered in order to give the proper sense of estimation risk. Eighty examples and computations with R software are given throughout the text.
Handbook of Statistics: Disease Modelling and Public Health, Part B, Volume 37 addresses new challenges in existing and emerging diseases. As a two part volume, this title covers an extensive range of techniques in the field, with this book including chapters on Reaction diffusion equations and their application on bacterial communication, Spike and slab methods in disease modeling, Mathematical modeling of mass screening and parameter estimation, Individual-based and agent-based models for infectious disease transmission and evolution: an overview, and a section on Visual Clustering of Static and Dynamic High Dimensional Data. This volume covers the lack of availability of complete data relating to disease symptoms and disease epidemiology, one of the biggest challenges facing vaccine developers, public health planners, epidemiologists and health sector researchers.
The book focuses on system dependability modeling and calculation, considering the impact of s-dependency and uncertainty. The best suited approaches for practical system dependability modeling and calculation, (1) the minimal cut approach, (2) the Markov process approach, and (3) the Markov minimal cut approach as a combination of (1) and (2) are described in detail and applied to several examples. The stringently used Boolean logic during the whole development process of the approaches is the key for the combination of the approaches on a common basis. For large and complex systems, efficient approximation approaches, e.g. the probable Markov path approach, have been developed, which can take into account s-dependencies be-tween components of complex system structures. A comprehensive analysis of aleatory uncertainty (due to randomness) and epistemic uncertainty (due to lack of knowledge), and their combination, developed on the basis of basic reliability indices and evaluated with the Monte Carlo simulation method, has been carried out. The uncertainty impact on system dependability is investigated and discussed using several examples with different levels of difficulty. The applications cover a wide variety of large and complex (real-world) systems. Actual state-of-the-art definitions of terms of the IEC 60050-192:2015 standard, as well as the dependability indices, are used uniformly in all six chapters of the book.
This book presents a unique collection of contributions on modern topics in statistics and econometrics, written by leading experts in the respective disciplines and their intersections. It addresses nonparametric statistics and econometrics, quantiles and expectiles, and advanced methods for complex data, including spatial and compositional data, as well as tools for empirical studies in economics and the social sciences. The book was written in honor of Christine Thomas-Agnan on the occasion of her 65th birthday. Given its scope, it will appeal to researchers and PhD students in statistics and econometrics alike who are interested in the latest developments in their field.
This book develops the theory of productivity measurement using the empirical index number approach. The theory uses multiplicative indices and additive indicators as measurement tools, instead of relying on the usual neo-classical assumptions, such as the existence of a production function characterized by constant returns to scale, optimizing behavior of the economic agents, and perfect foresight. The theory can be applied to all the common levels of aggregation (micro, meso, and macro), and half of the book is devoted to accounting for the links existing between the various levels. Basic insights from National Accounts are thereby used. The final chapter is devoted to the decomposition of productivity change into the contributions of efficiency change, technological change, scale effects, and input or output mix effects. Applications on real-life data demonstrate the empirical feasibility of the theory. The book is directed to a variety of overlapping audiences: statisticians involved in measuring productivity change; economists interested in growth accounting; researchers relating macro-economic productivity change to its industrial sources; enterprise micro-data researchers; and business analysts interested in performance measurement.
This revised edition presents the relevant aspects of
transformational geometry, matrix algebra, and calculus to those
who may be lacking the necessary mathematical foundations of
applied multivariate analysis. It brings up-to-date many
definitions of mathematical concepts and their operations. It also
clearly defines the relevance of the exercises to concerns within
the business community and the social and behavioral sciences.
Readers gain a technical background for tackling
applications-oriented multivariate texts and receive a geometric
perspective for understanding multivariate methods."Mathematical
Tools for Applied Multivariate Analysis, Revised Edition
illustrates major concepts in matrix algebra, linear structures,
and eigenstructures geometrically, numerically, and algebraically.
The authors emphasize the applications of these techniques by
discussing potential solutions to problems outlined early in the
book. They also present small numerical examples of the various
concepts.
Statistics in Practice A new series of practical books outlining the use of statistical techniques in a wide range of application areas:
This book describes computational problems related to kernel density estimation (KDE) - one of the most important and widely used data smoothing techniques. A very detailed description of novel FFT-based algorithms for both KDE computations and bandwidth selection are presented. The theory of KDE appears to have matured and is now well developed and understood. However, there is not much progress observed in terms of performance improvements. This book is an attempt to remedy this. The book primarily addresses researchers and advanced graduate or postgraduate students who are interested in KDE and its computational aspects. The book contains both some background and much more sophisticated material, hence also more experienced researchers in the KDE area may find it interesting. The presented material is richly illustrated with many numerical examples using both artificial and real datasets. Also, a number of practical applications related to KDE are presented.
In this book, an integrated introduction to statistical inference is provided from a frequentist likelihood-based viewpoint. Classical results are presented together with recent developments, largely built upon ideas due to R.A. Fisher. The term "neo-Fisherian" highlights this.After a unified review of background material (statistical models, likelihood, data and model reduction, first-order asymptotics) and inference in the presence of nuisance parameters (including pseudo-likelihoods), a self-contained introduction is given to exponential families, exponential dispersion models, generalized linear models, and group families. Finally, basic results of higher-order asymptotics are introduced (index notation, asymptotic expansions for statistics and distributions, and major applications to likelihood inference).The emphasis is more on general concepts and methods than on regularity conditions. Many examples are given for specific statistical models. Each chapter is supplemented with problems and bibliographic notes. This volume can serve as a textbook in intermediate-level undergraduate and postgraduate courses in statistical inference.
This book presents a broad range of statistical techniques to address emerging needs in the field of repeated measures. It also provides a comprehensive overview of extensions of generalized linear models for the bivariate exponential family of distributions, which represent a new development in analysing repeated measures data. The demand for statistical models for correlated outcomes has grown rapidly recently, mainly due to presence of two types of underlying associations: associations between outcomes, and associations between explanatory variables and outcomes. The book systematically addresses key problems arising in the modelling of repeated measures data, bearing in mind those factors that play a major role in estimating the underlying relationships between covariates and outcome variables for correlated outcome data. In addition, it presents new approaches to addressing current challenges in the field of repeated measures and models based on conditional and joint probabilities. Markov models of first and higher orders are used for conditional models in addition to conditional probabilities as a function of covariates. Similarly, joint models are developed using both marginal-conditional probabilities as well as joint probabilities as a function of covariates. In addition to generalized linear models for bivariate outcomes, it highlights extended semi-parametric models for continuous failure time data and their applications in order to include models for a broader range of outcome variables that researchers encounter in various fields. The book further discusses the problem of analysing repeated measures data for failure time in the competing risk framework, which is now taking on an increasingly important role in the field of survival analysis, reliability and actuarial science. Details on how to perform the analyses are included in each chapter and supplemented with newly developed R packages and functions along with SAS codes and macro/IML. It is a valuable resource for researchers, graduate students and other users of statistical techniques for analysing repeated measures data.
Data-driven discovery is revolutionizing how we model, predict, and control complex systems. Now with Python and MATLAB (R), this textbook trains mathematical scientists and engineers for the next generation of scientific discovery by offering a broad overview of the growing intersection of data-driven methods, machine learning, applied optimization, and classical fields of engineering mathematics and mathematical physics. With a focus on integrating dynamical systems modeling and control with modern methods in applied machine learning, this text includes methods that were chosen for their relevance, simplicity, and generality. Topics range from introductory to research-level material, making it accessible to advanced undergraduate and beginning graduate students from the engineering and physical sciences. The second edition features new chapters on reinforcement learning and physics-informed machine learning, significant new sections throughout, and chapter exercises. Online supplementary material - including lecture videos per section, homeworks, data, and code in MATLAB (R), Python, Julia, and R - available on databookuw.com.
The collection and analysis of data play an important role in many fields of science and technology, such as computational biology, quantitative finance, information engineering, machine learning, neuroscience, medicine, and the social sciences. Especially in the era of big data, researchers can easily collect data characterised by massive dimensions and complexity. In celebration of Professor Kai-Tai Fang's 80th birthday, we present this book, which furthers new and exciting developments in modern statistical theories, methods and applications. The book features four review papers on Professor Fang's numerous contributions to the fields of experimental design, multivariate analysis, data mining and education. It also contains twenty research articles contributed by prominent and active figures in their fields. The articles cover a wide range of important topics such as experimental design, multivariate analysis, data mining, hypothesis testing and statistical models.
This proceedings volume compiles and expands on selected and peer reviewed presentations given at the 81st Annual Meeting of the Psychometric Society (IMPS), organized by the University of North Carolina at Greensboro, and held in Asheville, North Carolina, July 11th to 17th, 2016. IMPS is one of the largest international meetings focusing on quantitative measurement in psychology, education, and the social sciences, both in terms of participants and number of presentations. The meeting built on the Psychometric Society's mission to share quantitative methods relevant to psychology, addressing a diverse set of psychometric topics including item response theory, factor analysis, structural equation modeling, time series analysis, mediation analysis, cognitive diagnostic models, and multi-level models. Selected presenters were invited to revise and expand their contributions and to have them peer reviewed and published in this proceedings volume. Previous volumes to showcase work from the Psychometric Society's meetings are New Developments in Quantitative Psychology: Presentations from the 77th Annual Psychometric Society Meeting (Springer, 2013), Quantitative Psychology Research: The 78th Annual Meeting of the Psychometric Society (Springer, 2015), Quantitative Psychology Research: The 79th Annual Meeting of the Psychometric Society, Madison, Wisconsin, 2014 (Springer, 2015), and Quantitative Psychology Research: The 80th Annual Meeting of the Psychometric Society, Beijing, 2015 (Springer, 2016).
Hardbound. Major theoretical advances were made in this area of research, and in the course of these developments order statistics has also found important applications in many diverse areas. These include life-testing and reliability, robustness studies, statistical quality control, filtering theory, signal processing, image processing, and radar target detection. Theoretical researchers working on theoretical and methodological advancements on order statistics and applied statisticians and engineers developing new and innovative applications of order statistics have been successfully brought together to create this handbook. For the convenience of readers, the subject matter has been divided into two volumes. This volume focuses on theory and methods, and volume 17 deals primarily with applications. Each volume has been divided into parts, each part specializing in one aspect of order statistics. The articles in this volume have been classified into
Offering the first comprehensive treatment of the theory of random measures, this book has a very broad scope, ranging from basic properties of Poisson and related processes to the modern theories of convergence, stationarity, Palm measures, conditioning, and compensation. The three large final chapters focus on applications within the areas of stochastic geometry, excursion theory, and branching processes. Although this theory plays a fundamental role in most areas of modern probability, much of it, including the most basic material, has previously been available only in scores of journal articles. The book is primarily directed towards researchers and advanced graduate students in stochastic processes and related areas.
This book explains and explores the growth curve model as a tool to gain insights into various research topics of interest to academics and practitioners alike. It includes studies on growth models for repeated measurement mixture experiments, and optimal designs for growth prediction in order to find an optimum design for the most efficient estimation of the parameters of the mixture models. It presents longitudinal studies conducted on the mathematical aptitude and intelligence quotient of tribal population in North Eastern states of India, and innovative statistical analysis showing that the status of tribes is improving over time. These results are supplemented by similar cross- sectional studies, and a retrospective longitudinal study of the social environment in North Eastern tribes indicating that the growth status of the social environment is improving. Child health is an important topic in developing countries, and as such the book features an overview of the growth and nutritional status of children aged 5 to 18 in India. Characterization of Extended Uniform Distribution and its applications for quality control in industrial production, and in yield data of tuber crops among others are discussed. Characterizations of distribution in terms of performance rate are also proved. There is also a contribution examining the past and present status of mangroves in Sunderban region of the Indian state of West Bengal from an ecological viewpoint using a growth curve model set-up. Lastly, it includes a chapter on a statistical study of platelet size decomposition and related growth model. Highlighting the importance of growth curve modelling as it applies to actual field data and encouraging more theoretically inclined statisticians to look into theoretical issues that need investigation, the book disseminates applications of the growth curve model to real-world problems and addresses related theoretical issues for the attention of theoreticians and practitioners.
This book presents up-to-date research developments and novel methodologies on semi-Markovian jump systems (S-MJS). It presents solutions to a series of problems with new approaches for the control and filtering of S-MJS, including stability analysis, sliding mode control, dynamic output feedback control, robust filter design, and fault detection. A set of newly developed techniques such as piecewise analysis method, positively invariant set approach, event-triggered method, and cone complementary linearization approaches are presented. Control and Filtering for Semi-Markovian Jump Systems is a comprehensive reference for researcher and practitioners working in control engineering, system sciences and applied mathematics, and is also a useful source of information for senior undergraduates and graduates in these areas. The readers will benefit from some new concepts, new models and new methodologies with practical significance in control engineering and signal processing.
This book offers postgraduate and early career researchers in accounting and information systems a guide to choosing, executing and reporting appropriate data analysis methods to answer their research questions. It provides readers with a basic understanding of the steps that each method involves, and of the facets of the analysis that require special attention. Rather than presenting an exhaustive overview of the methods or explaining them in detail, the book serves as a starting point for developing data analysis skills: it provides hands-on guidelines for conducting the most common analyses and reporting results, and includes pointers to more extensive resources. Comprehensive yet succinct, the book is brief and written in a language that everyone can understand - from students to those employed by organizations wanting to study the context in which they work. It also serves as a refresher for researchers who have learned data analysis techniques previously but who need a reminder for the specific study they are involved in.
This book on counting statistics presents a novel copula-based approach to counting dependent random events. It combines clustering, combinatorics-based algorithms and dependence structure in order to tackle and simplify complex problems, without disregarding the hierarchy of or interconnections between the relevant variables. These problems typically arise in real-world applications and computations involving big data in finance, insurance and banking, where experts are confronted with counting variables in monitoring random events. In this new approach, combinatorial distributions of random events are the core element. In order to deal with the high-dimensional features of the problem, the combinatorial techniques are used together with a clustering approach, where groups of variables sharing common characteristics and similarities are identified and the dependence structure within groups is taken into account. The original problems can then be modeled using new classes of copulas, referred to here as clusterized copulas, which are essentially based on preliminary groupings of variables depending on suitable characteristics and hierarchical aspects. The book includes examples and real-world data applications, with a special focus on financial applications, where the new algorithms' performance is compared to alternative approaches and further analyzed. Given its scope, the book will be of interest to master students, PhD students and researchers whose work involves or can benefit from the innovative methodologies put forward here. It will also stimulate the empirical use of new approaches among professionals and practitioners in finance, insurance and banking.
The intensive exchange between mathematicians and users has led in recent years to a rapid development of stochastic analysis. Of the users, the physicists form perhaps the most important group, giving direction to the mathematicians' research and providing a source of intuition. White noise analysis has emerged as a viable framework for stochastic and infinite dimensional analysis. Another growth area is the theory of stochastic partial differential equations. Gauge field theories are attracting increasing attention. Dirichlet forms provide a fruitful link between the mathematics of Markov processes and the physics of quantum systems. The deterministic-stochastic interface is addressed, as are Euclidean quantum mechanics, excursions of diffusions and the convergence of Markov chains to thermal states.
This introductory book enables researchers and students of all backgrounds to compute interrater agreements for nominal data. It presents an overview of available indices, requirements, and steps to be taken in a research project with regard to reliability, preceded by agreement. The book explains the importance of computing the interrater agreement and how to calculate the corresponding indices. Furthermore, it discusses current views on chance expected agreement and problems related to different research situations, so as to help the reader consider what must be taken into account in order to achieve a proper use of the indices. The book offers a practical guide for researchers, Ph.D. and master students, including those without any previous training in statistics (such as in sociology, psychology or medicine), as well as policymakers who have to make decisions based on research outcomes in which these types of indices are used.
This book is open access under a CC BY-NC 2.5 license. This book describes the extensive contributions made toward the advancement of human assessment by scientists from one of the world's leading research institutions, Educational Testing Service. The book's four major sections detail research and development in measurement and statistics, education policy analysis and evaluation, scientific psychology, and validity. Many of the developments presented have become de-facto standards in educational and psychological measurement, including in item response theory (IRT), linking and equating, differential item functioning (DIF), and educational surveys like the National Assessment of Educational Progress (NAEP), the Programme of international Student Assessment (PISA), the Progress of International Reading Literacy Study (PIRLS) and the Trends in Mathematics and Science Study (TIMSS). In addition to its comprehensive coverage of contributions to the theory and methodology of educational and psychological measurement and statistics, the book gives significant attention to ETS work in cognitive, personality, developmental, and social psychology, and to education policy analysis and program evaluation. The chapter authors are long-standing experts who provide broad coverage and thoughtful insights that build upon decades of experience in research and best practices for measurement, evaluation, scientific psychology, and education policy analysis. Opening with a chapter on the genesis of ETS and closing with a synthesis of the enormously diverse set of contributions made over its 70-year history, the book is a useful resource for all interested in the improvement of human assessment.
Computer Simulation of Sedimentary Cover Evolution; S.E. Medvedev. Numerical Simulation of Pore Fluid Movements in the Upper Rotliegend of the North German Depression; J. Springer, G. Schwab. Modeling of Subsidence, Temperature, and Maturity in the North German Basin; A. Berthold, K. Menschner. Differential Compaction and Structural Genesis; H. Dietrich. Dissolution and Cememtation in Basin Simulation; R. Ondrak, U. Bayer. The Use of Fision Track Measurements in Basin Modeling; P.K. Jensen, et al. Mass-Balanced Reconstruction of Paleogeology; W.W. Hay, C.N. Wold. The Simulation of Large-Scale Sedimentary Structures; P.A. Dowd. A Quantitative Basin Analysis System for Petroleum Exploration; S. Cao et al. Well-Log Imaging and its Application to Geologic Interpretation; L. Huang, et al. An Integrated Approach to Basin Analysis and Mineral Exploration; D.F. Merriam, et al. 8 additional articles. Index.
This book volume provides complete and updated information on the applications of Design of Experiments (DoE) and related multivariate techniques at various stages of pharmaceutical product development. It discusses the applications of experimental designs that shall include oral, topical, transdermal, injectables preparations, and beyond for nanopharmaceutical product development, leading to dedicated case studies on various pharmaceutical experiments through illustrations, art-works, tables and figures. This book is a valuable guide for all academic and industrial researchers, pharmaceutical and biomedical scientists, undergraduate and postgraduate research scholars, pharmacists, biostatisticians, biotechnologists, formulations and process engineers, regulatory affairs and quality assurance personnel.
Eugene B. Dynkin published his first paper, on Markov chain theory, whilst still an undergraduate student at Moscow State University. He went on to make fundamental contributions to the theory of Markov processes and to Lie groups, generating entire schools in these areas. This volume features original mathematical papers, written to honour E.B. Dynkin's 70th birthday. It contains papers dealing with problems in stochastic analysis, probability theory and mathematical physics. |
![]() ![]() You may like...
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
Statistics for Management and Economics
Gerald Keller, Nicoleta Gaciu
Paperback
Time Series Analysis - With Applications…
Jonathan D. Cryer, Kung-Sik Chan
Hardcover
R2,742
Discovery Miles 27 420
Introductory Statistics Achieve access…
Stephen Kokoska
Mixed media product
R2,551
Discovery Miles 25 510
The Practice of Statistics for Business…
David S Moore, George P. McCabe, …
Mixed media product
R2,551
Discovery Miles 25 510
Mathematical Statistics with…
William Mendenhall, Dennis Wackerly, …
Paperback
|