![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Probability & statistics
Flexible Bayesian Regression Modeling is a step-by-step guide to the Bayesian revolution in regression modeling, for use in advanced econometric and statistical analysis where datasets are characterized by complexity, multiplicity, and large sample sizes, necessitating the need for considerable flexibility in modeling techniques. It reviews three forms of flexibility: methods which provide flexibility in their error distribution; methods which model non-central parts of the distribution (such as quantile regression); and finally models that allow the mean function to be flexible (such as spline models). Each chapter discusses the key aspects of fitting a regression model. R programs accompany the methods. This book is particularly relevant to non-specialist practitioners with intermediate mathematical training seeking to apply Bayesian approaches in economics, biology, finance, engineering and medicine.
Presents a useful guide for applications of SEM whilst systematically demonstrating various SEM models using Mplus Focusing on the conceptual and practical aspects of Structural Equation Modeling (SEM), this book demonstrates basic concepts and examples of various SEM models, along with updates on many advanced methods, including confirmatory factor analysis (CFA) with categorical items, bifactor model, Bayesian CFA model, item response theory (IRT) model, graded response model (GRM), multiple imputation (MI) of missing values, plausible values of latent variables, moderated mediation model, Bayesian SEM, latent growth modeling (LGM) with individually varying times of observations, dynamic structural equation modeling (DSEM), residual dynamic structural equation modeling (RDSEM), testing measurement invariance of instrument with categorical variables, longitudinal latent class analysis (LLCA), latent transition analysis (LTA), growth mixture modeling (GMM) with covariates and distal outcome, manual implementation of the BCH method and the three-step method for mixture modeling, Monte Carlo simulation power analysis for various SEM models, and estimate sample size for latent class analysis (LCA) model. The statistical modeling program Mplus Version 8.2 is featured with all models updated. It provides researchers with a flexible tool that allows them to analyze data with an easy-to-use interface and graphical displays of data and analysis results. Intended as both a teaching resource and a reference guide, and written in non-mathematical terms, Structural Equation Modeling: Applications Using Mplus, 2nd edition provides step-by-step instructions of model specification, estimation, evaluation, and modification. Chapters cover: Confirmatory Factor Analysis (CFA); Structural Equation Models (SEM); SEM for Longitudinal Data; Multi-Group Models; Mixture Models; and Power Analysis and Sample Size Estimate for SEM. Presents a useful reference guide for applications of SEM while systematically demonstrating various advanced SEM models Discusses and demonstrates various SEM models using both cross-sectional and longitudinal data with both continuous and categorical outcomes Provides step-by-step instructions of model specification and estimation, as well as detailed interpretation of Mplus results using real data sets Introduces different methods for sample size estimate and statistical power analysis for SEM Structural Equation Modeling is an excellent book for researchers and graduate students of SEM who want to understand the theory and learn how to build their own SEM models using Mplus.
In a world where we are constantly being asked to make decisions based on incomplete information, facility with basic probability is an essential skill. This book provides a solid foundation in basic probability theory designed for intellectually curious readers and those new to the subject. Through its conversational tone and careful pacing of mathematical development, the book balances a charming style with informative discussion. This text will immerse the reader in a mathematical view of the world, giving them a glimpse into what attracts mathematicians to the subject in the first place. Rather than simply writing out and memorizing formulas, the reader will come out with an understanding of what those formulas mean, and how and when to use them. Readers will also encounter settings where probabilistic reasoning does not apply or where intuition can be misleading. This book establishes simple principles of counting collections and sequences of alternatives, and elaborates on these techniques to solve real world problems both inside and outside the casino. Pair this book with the HarvardX online course for great videos and interactive learning: https://harvardx.link/fat-chance.
Integrated Population Biology and Modeling: Part B, Volume 40, offers very delicately complex and precise realities of quantifying modern and traditional methods of understanding populations and population dynamics, with this updated release focusing on Prey-predator animal models, Back projections, Evolutionary Biology computations, Population biology of collective behavior and bio patchiness, Collective behavior, Population biology through data science, Mathematical modeling of multi-species mutualism: new insights, remaining challenges and applications to ecology, Population Dynamics of Manipur, Stochastic Processes and Population Dynamics Models: The Mechanisms for Extinction, Persistence and Resonance, Theories of Stationary Populations and association with life lived and life left, and more.
Individual Participant Data Meta-Analysis: A Handbook for Healthcare Research provides a comprehensive introduction to the fundamental principles and methods that healthcare researchers need when considering, conducting or using individual participant data (IPD) meta-analysis projects. Written and edited by researchers with substantial experience in the field, the book details key concepts and practical guidance for each stage of an IPD meta-analysis project, alongside illustrated examples and summary learning points. Split into five parts, the book chapters take the reader through the journey from initiating and planning IPD projects to obtaining, checking, and meta-analysing IPD, and appraising and reporting findings. The book initially focuses on the synthesis of IPD from randomised trials to evaluate treatment effects, including the evaluation of participant-level effect modifiers (treatment-covariate interactions). Detailed extension is then made to specialist topics such as diagnostic test accuracy, prognostic factors, risk prediction models, and advanced statistical topics such as multivariate and network meta-analysis, power calculations, and missing data. Intended for a broad audience, the book will enable the reader to: Understand the advantages of the IPD approach and decide when it is needed over a conventional systematic review Recognise the scope, resources and challenges of IPD meta-analysis projects Appreciate the importance of a multi-disciplinary project team and close collaboration with the original study investigators Understand how to obtain, check, manage and harmonise IPD from multiple studies Examine risk of bias (quality) of IPD and minimise potential biases throughout the project Understand fundamental statistical methods for IPD meta-analysis, including two-stage and one-stage approaches (and their differences), and statistical software to implement them Clearly report and disseminate IPD meta-analyses to inform policy, practice and future research Critically appraise existing IPD meta-analysis projects Address specialist topics such as effect modification, multiple correlated outcomes, multiple treatment comparisons, non-linear relationships, test accuracy at multiple thresholds, multiple imputation, and developing and validating clinical prediction models Detailed examples and case studies are provided throughout.
Ranked Set Sampling: 65 Years Improving the Accuracy in Data Gathering is an advanced survey technique which seeks to improve the likelihood that collected sample data presents a good representation of the population and minimizes the costs associated with obtaining them. The main focus of many agricultural, ecological and environmental studies is the development of well designed, cost-effective and efficient sampling designs, giving RSS techniques a particular place in resolving the disciplinary problems of economists in application contexts, particularly experimental economics. This book seeks to place RSS at the heart of economic study designs.
Reliability Modelling and Analysis in Discrete Time provides an overview of the probabilistic and statistical aspects connected with discrete reliability systems. This engaging book discusses their distributional properties and dependence structures before exploring various orderings associated between different reliability structures. Though clear explanations, multiple examples, and exhaustive coverage of the basic and advanced topics of research in this area, the work gives the reader a thorough understanding of the theory and concepts associated with discrete models and reliability structures. A comprehensive bibliography assists readers who are interested in further research and understanding. Requiring only an introductory understanding of statistics, this book offers valuable insight and coverage for students and researchers in Probability and Statistics, Electrical Engineering, and Reliability/Quality Engineering. The book also includes a comprehensive bibliography to assist readers seeking to delve deeper.
Praise for the First Edition " . . . an excellent addition to an upper-level undergraduate
course on environmental statistics, and . . . a 'must-have' desk
reference for environmental practitioners dealing with censored
datasets." Statistical Methods for Censored Environmental Data Using Minitab(R) and R, Second Edition introduces and explains methods for analyzing and interpreting censored data in the environmental sciences. Adapting survival analysis techniques from other fields, the book translates well-established methods from other disciplines into new solutions for environmental studies. This new edition applies methods of survival analysis, including methods for interval-censored data to the interpretation of low-level contaminants in environmental sciences and occupational health. Now incorporating the freely available R software as well as Minitab(R) into the discussed analyses, the book features newly developed and updated material including: A new chapter on multivariate methods for censored data Use of interval-censored methods for treating true nondetects as lower than and separate from values between the detection and quantitation limits ("remarked data") A section on summing data with nondetects A newly written introduction that discusses invasive data, showing why substitution methods fail Expanded coverage of graphical methods for censored data The author writes in a style that focuses on applications rather than derivations, with chapters organized by key objectives such as computing intervals, comparing groups, and correlation. Examples accompany each procedure, utilizing real-world data that can be analyzed using the Minitab(R) and R software macros available on the book's related website, and extensive references direct readers to authoritative literature from the environmental sciences. Statistics for Censored Environmental Data Using Minitab(R) and R, Second Edition is an excellent book for courses on environmental statistics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for?environmental professionals, biologists, and ecologists who focus on the water sciences, air quality, and soil science.
The present monograph on stochastic Komatu-Loewner evolutions (SKLEs) provides the first systematic extension of the Schramm-Loewner evolution (SLE) theory from a simply connected planar domain to multiply connected domains by using the Brownian motion with darning (BMD) that has arisen in a recent study of the boundary theory of symmetric Markov processes.This volume is presented in an accessible manner for the interested researchers and graduate students. It also brings new insights into SLEs as special cases of SKLEs. Mathematically, it can be viewed as a powerful application of stochastic analysis via BMDs to complex analysis.
Nonlinear Time Series Analysis with R provides a practical guide to emerging empirical techniques allowing practitioners to diagnose whether highly fluctuating and random appearing data are most likely driven by random or deterministic dynamic forces. It joins the chorus of voices recommending 'getting to know your data' as an essential preliminary evidentiary step in modelling. Time series are often highly fluctuating with a random appearance. Observed volatility is commonly attributed to exogenous random shocks to stable real-world systems. However, breakthroughs in nonlinear dynamics raise another possibility: highly complex dynamics can emerge endogenously from astoundingly parsimonious deterministic nonlinear models. Nonlinear Time Series Analysis (NLTS) is a collection of empirical tools designed to aid practitioners detect whether stochastic or deterministic dynamics most likely drive observed complexity. Practitioners become 'data detectives' accumulating hard empirical evidence supporting their modelling approach. This book is targeted to professionals and graduate students in engineering and the biophysical and social sciences. Its major objectives are to help non-mathematicians - with limited knowledge of nonlinear dynamics - to become operational in NLTS; and in this way to pave the way for NLTS to be adopted in the conventional empirical toolbox and core coursework of the targeted disciplines. Consistent with modern trends in university instruction, the book makes readers active learners with hands-on computer experiments in R code directing them through NLTS methods and helping them understand the underlying logic (please see www.marco.bittelli.com). The computer code is explained in detail so that readers can adjust it for use in their own work. The book also provides readers with an explicit framework - condensed from sound empirical practices recommended in the literature - that details a step-by-step procedure for applying NLTS in real-world data diagnostics.
This book presents a multidisciplinary perspective on chance, with contributions from distinguished researchers in the areas of biology, cognitive neuroscience, economics, genetics, general history, law, linguistics, logic, mathematical physics, statistics, theology and philosophy. The individual chapters are bound together by a general introduction followed by an opening chapter that surveys 2500 years of linguistic, philosophical, and scientific reflections on chance, coincidence, fortune, randomness, luck and related concepts. A main conclusion that can be drawn is that, even after all this time, we still cannot be sure whether chance is a truly fundamental and irreducible phenomenon, in that certain events are simply uncaused and could have been otherwise, or whether it is always simply a reflection of our ignorance. Other challenges that emerge from this book include a better understanding of the contextuality and perspectival character of chance (including its scale-dependence), and the curious fact that, throughout history (including contemporary science), chance has been used both as an explanation and as a hallmark of the absence of explanation. As such, this book challenges the reader to think about chance in a new way and to come to grips with this endlessly fascinating phenomenon.
Essential Methods for Design Based Sample Surveys presents key method contributions selected from the volume in the Handbook of Statistics: Sample Surveys: Design, Methods and Applications, Vol. 29a (2009). This essential reference provides specific aspects of sample survey design, with references to important contributions and available software. The content is aimed at researchers and practitioners who use statistical methods in design based sample surveys and market research. This book presents the core essential methods of sample selection and data processing. The data processing discussion covers editing and imputation, and methods of disclosure control. This reference contains a large variety of applications in specialized areas such as household and business surveys, marketing research, opinion polls and censuses.
When it comes to data collection and analysis, ranked set sampling (RSS) continues to increasingly be the focus of methodological research. This type of sampling is an alternative to simple random sampling and can offer substantial improvements in precision and efficient estimation. There are different methods within RSS that can be further explored and discussed. On top of being efficient, RSS is cost-efficient and can be used in situations where sample units are difficult to obtain. With new results in modeling and applications, and a growing importance in theory and practice, it is essential for modeling to be further explored and developed through research. Ranked Set Sampling Models and Methods presents an innovative look at modeling survey sampling research and new models of RSS along with the future potentials of it. The book provides a panoramic view of the state of the art of RSS by presenting some previously known and new models. The chapters illustrate how the modeling is to be developed and how they improve the efficiency of the inferences. The chapters highlight topics such as bootstrap methods, fuzzy weight ranked set sampling method, item count technique, stratified ranked set sampling, and more. This book is essential for statisticians, social and natural science scientists, physicians and all the persons involved with the use of sampling theory in their research along with practitioners, researchers, academicians, and students interested in the latest models and methods for ranked set sampling.
|
You may like...
Measuring Nothing, Repeatedly - Null…
Allan Franklin, Ronald Laymon
Paperback
R758
Discovery Miles 7 580
|