![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Classical mechanics > Sound, vibration & waves (acoustics)
The study of vibrations and waves is central to physics and engineering disciplines.This text contains a detailed treatment of vibrations and waves at an introductory level suitable for second and third year students. It builds on first year physics and emphasizes understanding of vibratory motion and waves based on first principles. Since waves appear in almost all branches of physics and engineering, readers will be exposed to many different types of waves; this study aims to draw together their similarities, by examining them in a common language. The book is divided into three parts: Part I contains a preliminary chapter that serves as a review of relevant ideas of mechanics and complex numbers. Part II is devoted to a detailed discussion of vibrations of mechanical systems. This part covers simple harmonic oscillator, coupled oscillators, normal coordinates, beaded string, continuous string, and Fourier series. It concludes with a presentation of stationary solutions of driven finite systems. Part III is concerned with waves, focusing on the discussion of common aspects of all types of waves, and the applications to sound, electromagnetic, and matter waves are illustrated. Finally, relevant examples are provided at the end of the chapters to illustrate the main ideas, and better the reader's understanding.
Acoustics of Nanodispersed Magnetic Fluids presents key information on the acoustic properties of magnetic fluids. The book is based on research carried out by the author as well as on many publications in both the Russian and foreign scientific literature from 1969 onwards. It describes a wide variety of topics, which together lay the foundation of a new scientific research area: the acoustics of nanodispersed media. The book examines the nanoscale structure of matter in specific areas and discusses the following: Model theory and known features of the propagation of sound waves in magnetised fluids Acoustomagnetic and magnetoacoustic effects in magnetic fluids Acoustomagnetic spectroscopy of vibrational modes in the liquid-shell system Vibration and rheological effects of magnetised magnetic fluids Acoustometry of the shape of magnetic nanoaggregates and non-magnetic microaggregates Acoustogranulometry, a new method for studying the physical properties of magnetic nanoparticles dispersed in a carrier fluid The book is a valuable resource for engineers and researchers in the fields of acoustics, physical acoustics, magnetic hydrodynamics, and rheology physics. The experimental methods, which are described in this book, are based on incompatible features of magnetic fluids, i.e. strong magnetism, fluidity and compressibility. As a result, this can find industrial application in advanced technology. It is also useful for both advanced undergraduate and graduate students studying nanotechnology, materials science, physical and applied acoustics.
A complete survey of modern design and analysis techniques for optical waveguides This volume thoroughly details modern and widely accepted methods for designing the optical waveguides used in telecommunications systems. It offers a straightforward presentation of the sophisticated techniques used in waveguide analysis and enables a quick grasp of modern numerical methods with easy mathematics. The book is intended to guide the reader to a comprehensive understanding of optical waveguide analysis through self-study. This comprehensive presentation includes:
The authors provide excellent self-study material for practitioners, researchers, and students, while also presenting detailed mathematical manipulations that can be easily understood by readers who are unfamiliar with them. Introduction to Optical Waveguide Analysis presents modern design methods in a comprehensive and easy-to-understand format.
The Royal Society has initiated a series of meetings to discuss the effect advances in technology will have on our way of life in the next century. The two previous meetings have been concerned with housing and waste treat ment. The subject of the third meeting, communications, is no less critical to life, but it offers particular problems and uncertainties, especially in the forecasting of future trends. Indeed, some have doubted if there can be profitable debate on long-term development in such a fast-moving field. The importance of the topic justifies an attempt, and the reader will judge whether the authors have met the challenge. Communications today bears little resemblance to that of the 1970s. Then we knew about satellites and optical fibres, and we had seen lasers and silicon chips, but most of us could never imagine the potential of the new technologies within our grasp. We had also not assessed the thirst of the popUlation for more and better ways of talking and writing to each other. It was the combination of market need and technical capability that created the com munications revolution.
Waves and oscillations permeate virtually every field of current
physics research, are central to chemistry, and are essential to
much of engineering. Furthermore, the concepts and mathematical
techniques used for serious study of waves and oscillations form
the foundation for quantum mechanics. Once they have mastered these
ideas in a classical context, students will be ready to focus on
the challenging concepts of quantum mechanics when they encounter
them, rather than struggling with techniques.
This textbook provides a guide to the fundamental principles of acoustics in a straightforward manner using a solid foundation in mathematics and physics. It is designed for those who are new to acoustics and noise control, and includes all the necessary material for a comprehensive understanding of the topic. It is written in lecture-note style and can be easily adapted to an acoustics-related one semester course at the senior undergraduate or graduate level. The book also serves as a ready reference for the practicing engineer new to the application of acoustic principles arising in product design and fabrication.
Why does a piano sound like a piano? A similar question can be asked of virtually all musical instruments. A particular note - such as middle C - can be produced by a piano, a violin, a clarinet, and many other instruments, yet it is easy for even a musically untrained listener to distinguish between these different instruments. A central quest in the study of musical instruments is to understand why the sound of the "same" note depends greatly on the instrument, and to elucidate which aspects of an instrument are most critical in producing the musical tones characteristic of the instrument. The primary goal of Physics of the Piano is to investigate these questions for the piano. The explanations in this book use a minimum of mathematics, and are intended for anyone who is interested in music and musical instruments. At the same time, there are many insights relating physics and the piano that will likely be interesting and perhaps surprising for many physicists.
Acoustic microscopy enables the elastic properties of materials to be imaged and measured with the resolution of a good microscope. By using frequencies in the microwave regime, it is possible to make the acoustic wavelength comparable with the wavelength of light, and hence to achieve a resolution comparable with an optical microscope. Solids can support both longitudinal and transverse acoustic waves. At surfaces a unique combination of the two known as Raleigh waves can propagate, and in many circumstances these dominate the contrast in acoustic microscopy. Following the invention of scanning probe microscopes, it is now possible to use an atomic force microscope to detect the acoustic vibration of a surface with resolution in the nanometre range, thus beating the diffraction limit by operating in the extreme near-field. This second edition of Acoustic Microscopy has a major new chapter on the technique and applications of acoustically excited probe microscopy.
This book provides an introduction to Acoustic Emission Testing and its applications to different materials like concrete, steel, ceramics, geotechnical materials, polymers, biological structures and wood. Acoustic Emission Techniques (AET) techniques have been studied in engineering for a long time. The techniques are applied more and more to practical investigations and are more and more standardized in codes. This is because the degradation of structures due to ageing urgently demand for maintenance and rehabilitation of structures in service. It results in the need for the development of advanced and efficient inspection techniques. In mechanical engineering and concerning the monitoring of machines and mechanical components, AE is a widely accepted observing deterioration in the frame of structural health monitoring. The advantages of AE like sensitivity, damage localization potential, non-intrusive nature as well as developments in signal analysis and data transmission allow applications that could not be considered decades ago. As such, AE techniques draw great attention to diagnostic applications and in material testing. This book covers all levels from the description of AE basics for AE beginners (level of a student) to sophisticated AE algorithms and applications to real large-scale structures as well as the observation of the cracking process in laboratory specimen to study fracture processes. This book has proved its worth over the past twelve years. Now in its second edition, it will be a resource that sets the standard and equips readers for the future. All chapters from the 1st edition have been updated and rewritten and eight extra chapters (e.g also regarding AE tomography, AE in plate-like structures and AE for investigations of hardening of fresh concrete) have been added.
This book delivers a comprehensive and up-to-date treatment of practical applications of metamaterials, structured media, and conventional porous materials. With increasing levels of urbanization, a growing demand for motorized transport, and inefficient urban planning, environmental noise exposure is rapidly becoming a pressing societal and health concern. Phononic and sonic crystals, acoustic metamaterials, and metasurfaces can revolutionize noise and vibration control and, in many cases, replace traditional porous materials for these applications. In this collection of contributed chapters, a group of international researchers reviews the essentials of acoustic wave propagation in metamaterials and porous absorbers with viscothermal losses, as well as the most recent advances in the design of acoustic metamaterial absorbers. The book features a detailed theoretical introduction describing commonly used modelling techniques such as plane wave expansion, multiple scattering theory, and the transfer matrix method. The following chapters give a detailed consideration of acoustic wave propagation in viscothermal fluids and porous media, and the extension of this theory to non-local models for fluid saturated metamaterials, along with a description of the relevant numerical methods. Finally, the book reviews a range of practical industrial applications, making it especially attractive as a white book targeted at the building, automotive, and aeronautic industries.
This textbook provides materials for an introductory course in Engineering Acoustics for students with a basic knowledge of mathematics. The contents are based on extensive teaching experience at the graduate level. Each of the 14 main chapters deals with a well-defined topic and represents the material for a two-hour lecture. The chapters alternate between more theoretical and more application-oriented concepts. The presentation is organized to be suitable for self-study as well. For this third edition, the complete text and many figures have been revised. Several current amendments take account of advancements in the field. Further, a completely new chapter has been added which presents approaches and solutions to all assigned exercise problems. The new chapter offers the opportunity to explore the underlying theoretical background in more detail. However, the study of the problems and their proposed solutions is no prerequisite for comprehending the material presented in the book's lecture part.
This book introduces physics to a first year undergraduate in the language of mathematics. As such it aims to give a mathematical foundation to the physics taught pre-university, as well as extending it to the skills and disciplines approached during a first degree course in physical science or engineering. It bridges two gaps in modern education - between the level of difficulty in pre-university study and undergraduate study, and between mathematics and physics. Many of the concepts are revised or introduced in the course of 'workshop' questions which are an integral part of the text. Fully explained solutions to these workshops are given as a substantial appendix to the book. The student will be enabled to study classical mechanics in terms of vector calculus, fields in terms of line and surface integrals, oscillations and waves in terms of complex exponentials and so on. As far as we are aware, this book is unique in its aim, its content, and its approach.
This beautifully illustrated volume takes the reader on a wide-ranging tour through music education facilities designed during the past 20 years, with a particular emphasis on the acoustical and architectural design of the locations. The book opens with a series of essays from key design team members, including an acoustical consultant, architect, audio/video systems consultant, and theatre consultant. The main body of the work consists of a rich array of contributions from acoustical consulting firms and music education facility designers from across the world on their recent innovative works in the area of music education facility acoustics. Each entry includes high-resolution photos and renderings, scientific data, and evocative descriptions of the music education facilities. Filled with beautiful photography and fascinating modern design, this book is a must-read for anyone interested in music education architecture, acoustical design, or musical performance. "This new publication on design of music education facilities is highly welcomed. Not only does it present many acoustically interesting projects, it also gives an up-to-date introduction to the scientific knowledge and design practice in this field. The book also helps the reader to understand why it is so important to ensure good acoustic conditions in music education facilities: to nourish students at all levels to achieve their goals as musicians." - Anders Chr. Gade, Ph.D., senior consultant at Gade & Mortensen Akustik and author of Acoustics in Halls for Speech and Music (chapter in Springer Handbook of Acoustics) "This book ensures the reader will see the full vocabulary of elemental solutions to broad challenges. The expected concert halls, rehearsal spaces, and practice rooms are joined by newer, essential components: recording studios, control rooms, vocal booths, beat labs, and more. This media-rich publication enables detailed study while motivating big picture, interdisciplinary thinking. This new book curates and beautifully structures a deep store of outstanding architectural achievements that are sure to kindle the creation of future successful music education facilities." - Alex U. Case, Associate Professor of Sound Recording Technology at the University of Massachusetts Lowell and author of Sound FX - Unlocking the Creative Potential of Recording Studio Effects "This book is a wonderful collection of music education facilities. The narratives and images provide a wealth of information for the casual reader, student in acoustics, architect, owner/educator, and acoustician. Primary schools through universities are not often studied and reviewed. Finding a thorough collection of these space types is rare. This book is recommended for anyone who is studying, designing, or enjoys reading about music education facilities." - Jason Duty, P.E., Vice President at Charles M. Salter Associates, Inc.
This book is based on a series of lectures for an Astrophysics of the Interstellar Medium (ISM) master's degree in Astrophysics and Cosmology at Padova University. From the cold molecular phase in which stars and planetary systems form, to the very hot coronal gas that surrounds galaxies and galaxy clusters, the ISM is everywhere. Studying its properties is vital for the exploration of virtually any field in astronomy and cosmology. These notes give the student a coherent and accurate mathematical and physical approach, with continuous references to the real ISM in galaxies. The book is divided into three parts. Part One introduces the equations of fluid dynamics for a system at rest and acoustic waves, and then explores the real ISM through the role of thermal conduction and viscosity, concluding with a discussion of shock waves and turbulence. In Part Two, the electromagnetic field is switched on and its role in modulating shock waves and contrasting gravity is studied. Part Three describes dust and its properties, followed by the main stellar sources of energy. The last two chapters respectively address the various components of the ISM and molecular clouds and star formation.
Explore a unified treatment of the dynamics of combustor systems, including acoustics, fluid mechanics, and combustion in a single rigorous text. This updated new edition features an expansion of data and experimental material, updates the coverage of flow stability, and enhanced treatment of flame dynamics. Addresses system dynamics of clean energy and propulsion systems used in low emissions systems. Synthesizing the fields of fluid mechanics and combustion into a coherent understanding of the intrinsically unsteady processes in combustors. This is a perfect reference for engineers and researchers in fluid mechanics, combustion, and clean energy.
This book presents a technical solution to ensuring the noise immunity of navigation systems in civil aviation aircrafts at the stages of their terminal procedures. It highlights instrumental precision approaches to landing and landing in automatic mode using satellite and inertial radio navigation systems and ground-based augmentation used as the primary means, in accordance with the ICAO requirements. The book is intended for engineering and technical specialists engaged in the development, manufacture and operation of on-board radio electronic systems of aircrafts and ground-based radio engineering support for flights, as well as graduate students and senior students of radio engineering specialties. It is also useful for professionals whose activities are related to air traffic control.
Covers the latest developments in PNT technologies, including integrated satellite navigation, sensor systems, and civil applications Featuring sixty-four chapters that are divided into six parts, this two-volume work provides comprehensive coverage of the state-of-the-art in satellite-based position, navigation, and timing (PNT) technologies and civilian applications. It also examines alternative navigation technologies based on other signals-of-opportunity and sensors and offers a comprehensive treatment on integrated PNT systems for consumer and commercial applications. Volume 1 of Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications contains three parts and focuses on the satellite navigation systems, technologies, and engineering and scientific applications. It starts with a historical perspective of GPS development and other related PNT development. Current global and regional navigation satellite systems (GNSS and RNSS), their inter-operability, signal quality monitoring, satellite orbit and time synchronization, and ground- and satellite-based augmentation systems are examined. Recent progresses in satellite navigation receiver technologies and challenges for operations in multipath-rich urban environment, in handling spoofing and interference, and in ensuring PNT integrity are addressed. A section on satellite navigation for engineering and scientific applications finishes off the volume. Volume 2 of Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications consists of three parts and addresses PNT using alternative signals and sensors and integrated PNT technologies for consumer and commercial applications. It looks at PNT using various radio signals-of-opportunity, atomic clock, optical, laser, magnetic field, celestial, MEMS and inertial sensors, as well as the concept of navigation from Low-Earth Orbiting (LEO) satellites. GNSS-INS integration, neuroscience of navigation, and animal navigation are also covered. The volume finishes off with a collection of work on contemporary PNT applications such as survey and mobile mapping, precision agriculture, wearable systems, automated driving, train control, commercial unmanned aircraft systems, aviation, and navigation in the unique Arctic environment. In addition, this text: Serves as a complete reference and handbook for professionals and students interested in the broad range of PNT subjects Includes chapters that focus on the latest developments in GNSS and other navigation sensors, techniques, and applications Illustrates interconnecting relationships between various types of technologies in order to assure more protected, tough, and accurate PNT Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications will appeal to all industry professionals, researchers, and academics involved with the science, engineering, and applications of position, navigation, and timing technologies. pnt21book.com
The inverse scattering problem is central to many areas of science and technology such as radar, sonar, medical imaging, geophysical exploration and nondestructive testing. This book is devoted to the mathematical and numerical analysis of the inverse scattering problem for acoustic and electromagnetic waves. In this fourth edition, a number of significant additions have been made including a new chapter on transmission eigenvalues and a new section on the impedance boundary condition where particular attention has been made to the generalized impedance boundary condition and to nonlocal impedance boundary conditions. Brief discussions on the generalized linear sampling method, the method of recursive linearization, anisotropic media and the use of target signatures in inverse scattering theory have also been added.
The mathematical modelling of changing structures in materials is
of increasing importance to industry where applications of the
theory are found in subjects as diverse as aerospace and medicine.
This book deals with aspects of the nonlinear dynamics of
deformable ordered solids (known as
Although natural phenomena can be described by a few simple and symmetric basic laws they exhibit an astounding variety of behaviours. This can be explained by a process known as symmetry breaking, which can cause an ordered state to form with topological defects. The dynamics of further evolution are determined to a large extent by the dynamics of such defects. This book covers the structure and dynamics of vortices in a variety of nonlinear field models with spontaneously broken symmetry. Point vortices or vortex lines can correspond, depending on the physical setting, to quantized vortices in superfluids or superconductors, dislocations in non- equilibrium patterns, rotating spiral waves, disclinations in liquid crystals, singularities in optical fields or strings in relativistic field theories. This book is unique in considering vortices in these different settings, but also emphasizes the analytical methods that allow an understanding of the common theoretical structure underlying defect dynamics.
This textbook presents the fundamentals of audio coding, used to compress audio and music signals, using Python programs both as examples to illustrate the principles and for experiments for the reader. Together, these programs then form complete audio coders. The author starts with basic knowledge of digital signal processing (sampling, filtering) to give a thorough introduction to filter banks as used in audio coding, and their design methods. He then continues with the next core component, which are psycho-acoustic models. The author finally shows how to design and implement them. Lastly, the author goes on to describe components for more specialized coders, like the Integer-to-Integer MDCT filter bank, and predictive coding for lossless and low delay coding. Included are Python program examples for each section, which illustrate the principles and provide the tools for experiments. Comprehensively explains the fundamentals of filter banks and audio coding; Provides Python examples for each principle so that completed audio coders are obtained in the language; Includes a suite of classroom materials including exercises, experiments, and examples.
This open access book provides a view into the state-of-the-art research on aviation noise and related annoyance. The book will primarily focus on the achievements of the ANIMA project (Aviation Noise Impact Management through Novel Approaches), but not exclusively. The content has a broader theme in order to encompass. regulation issues, the ICAO (International Civil Aviation Organization) balanced approach, progresses made on technologies and reduction of noise at source, impact of possible future civil supersonic aircraft, land-use planning issues, as well as the core topics of the ANIMA project, i.e. impact on human beings, annoyance, quality of life, health and findings of the project in this respect. This book differs from traditional research programmes on aviation noise as the authors endeavour, not to lower noise at source, but to reduce the annoyance. This book examines these non-acoustic factors in an effort to help those most affected by aviation noise - communities living close to airports, and also help airport managers, policy-makers, local authorities and researchers to deal with this issue holistically. The book concludes with some recommendations for EU, national and local policy-makers, airport and aviation authorities, and more broadly a scientifically literate audience. These recommendations may help to identify gaps for progress in terms of research but also genuine implementation actions for political and regulatory authorities.
The purpose of this book is to present a self contained introduction to the mathematical and physical aspects of the theory of water waves. The book is aimed at undergraduate and graduate levels for engineers, physical scientists and mathematicians. Each chapter is concluded with practical problems expressed as exercises and accompanied by ample references for further studies. The book consists of ten chapters arranged into three parts: Part I: Basic Fluid Mechanics and Solutions Techniques which cover chapters 1-3. Part II: Water Waves covering chapters 4-7. Part III Advanced Water Waves which covers chapters 8-10. Parts I and II are elementary in nature; whereas Part III is more advanced. The first three chapters give the derivations of the fundamental mathematical equations. Chapter 2 outlines appropriate differential equations to describe the physical phenomena, and Chapter 3 reviews solution techniques of some simplified partial differential equations. Chapter 4 gives the developmental of wave equations, including the essential boundary conditons and describes small amplitude wave theory. Chapter 5 deals with finite amplitude wave theory and Chapter 6 outlines the study of tidal dynamics in shallow water. For random wave case, the deterministic methods described in previous chapters do not hold good. Therefore, chapter 7 is clearly devoted to wave statistics and wave energy spectrum. The application of wave theory is demonstrated in Chapter 8. Chapter 9 examines the nonlinear long waves in shallow water from a mathematical view point. The book concludes with Chapter 10 which illustrates the inverse scattering technique to solve solitary wave problem.
This book describes the recently-discovered artificially curved light beam known as the photonic hook. Self-bending of light, a long-time goal of optical scientists, was realized in 2007 with the Airy beam, followed by the first demonstration of the photonic hook by the authors of this book and their collaborators in 2015 and experimentally in 2019. The photonic hook has curvature less than the wavelength, along with other unique features described in this book that are not shared by Airy-like beams, and so deepens our understanding of light propagation. This book discusses the general principles of artificial near-field structured curved light and the full-wave simulations of the photonic hook along with their experimental confirmation. The book goes on to show how the photonic hook has implications for acoustic and surface plasmon waves and as well as applications in nanoparticle manipulation.
This Element introduces the exotic wave phenomena arising from the extremely small optical refractive index, and sheds light on the underlying mechanisms, with a primary focus on the basic concepts and fundamental wave physics. The authors reveal the exciting applications of ENZ metamaterials, which have profound impacts over a wide range of fields of science and technology. The sections are organized as follows: in Section 2, the authors demonstrate the extraordinary wave properties in ENZ metamaterials, analyzing the unique wave dynamics and the resulting effects. Section 3 is dedicated to introducing various realization methods of the ENZ metamaterials with periodic and non-periodic styles. The applications of ENZ metamaterials are discussed in Sections 4 and 5, from the perspectives of microwave engineering, optics, and quantum physics. The authors close in Section 6 by presenting an outlook on the development of ENZ metamaterials and discussing the key challenges addressed in future works. |
![]() ![]() You may like...
Piano Adventures Lesson Book Level 2A…
Nancy Faber, Randall Faber
Staple bound
![]()
The Way of Peace - Readings for a…
Michael Leach, Doris Goodnough, …
Paperback
Trinity College London Piano Exam Pieces…
Trinity College London
Paperback
R250
Discovery Miles 2 500
|