![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Classical mechanics > Sound, vibration & waves (acoustics)
The study of vibration in physical systems is central to almost all fields in physics and engineering. This work, originally published in two volumes, examines the classical aspects in Part I and the quantum oscillator in Part II. The classical linear vibrator is treated first and the underlying unity of all linear oscillations in electrical, mechanical and acoustic systems is emphasized. The treatment of nonlinear vibrations, a field with which engineers and physicists are generally less familiar, is then examined. Part II then concentrates on quantum systems, looking at the vibrations in atoms and molecules and their interaction with electromagnetic radiation. The similarities of classical and quantum methods are stressed and the limits of the classical treatment are examined. Throughout the book, each phenomenon discussed is well illustrated with many examples; and theory and experiment are compared. This is a useful introduction to the more advanced mathematical treatment of vibrations as it bridges the gap between the basic principles and more specialized concepts.
This highly informative and fascinating book brings together perspectives on sound by leading experts from a wide variety of disciplines. These include anthropology, physiology, zoology, physics, music, phonetics and film. Through crossing disciplinary boundaries, the volume hopes to inspire a richer and more creative approach to the acoustic world. Whilst aiming for a general audience and presented in an accessible style, several chapters also represent important contributions within their own disciplines or will serve as core texts for students. The sequence of nine chapters passes from cultural perspectives on silence, via the physics of sound, physiology of the ear, songs of birds, and sounds of human speech, to music. From the reconstruction of medieval music, via twentieth-century composition and the music of the Kaluli of Papua New Guinea, the volume concludes with the role of sound in film. Life will never sound the same again.
Reactive flows encompass a broad range of physical phenomena, interacting over many different time and space scales. Such flows occur in combustion, chemical lasers, the earth's oceans and atmosphere, and in stars. Because of a similarity in their descriptive equations, procedures for constructing numerical models of these systems are also similar, and these similarities can be exploited. Moreover, using the latest technology, what were once difficult and expensive computations can now be done on desktop computers. This new edition of a highly successful book presents algorithms useful for reactive flow simulations, describes trade-offs involved in their use, and gives guidance for building and using models of complex reactive flows. It takes account of the explosive growth in computer technology and the greatly increased capacity for solving complex reactive-flow problems that has occurred since the previous edition was published more than fifteen years ago. An indispensable guide on how to construct, use, and interpret numerical simulations of reactive flows, this book will be welcomed by advanced undergraduate and graduate students, and a wide range of researchers and practitioners in engineering, physics, and chemistry.
Gravitational radiation has not been positively detected. Over the past two decades an army of extremely sensitive detectors has been built up, so that today its detection appears inevitable. In the opening chapters of this 1991 book David Blair introduces the concepts of gravitational waves within the context of general relativity. The sources of gravitational radiation for which there is direct observational evidence and those of a more speculative nature are described. He then gives a general introduction to the methods of detection. In the subsequent chapters he has drawn together the leading scientists in the field to give a comprehensive practical and theoretical account of the physics and technology of gravitational wave detection. David Blair has extensive knowledge of the subject and has visited most of the gravitational radiation experiments over the world. He has compiled a book which will be of lasting value to specialists, both the postgraduates and researchers in the field.
Acoustical imaging has become an indispensable tool in a variety of fields. Since its introduction, the applications have grown and cover a variety of techniques, producing significant results in fields as disparate as medicine and seismology. Cutting-edge trends continue to be discussed worldwide. This book contains the proceedings of the 27th International Symposium on Acoustical Imaging (AI27), which took place in Saarbrucken, Germany, from March 24th to March 27th 2003. The Symposium belongs to a conference series in existence since 1968. AI27 comprised sessions on: Medical Imaging, Non-Destructive Testing, Seismic Imaging, Physics and Mathematics of Acoustical Imaging, Acoustic Microscopy. During two well-attended workshops the applications of quantitative acoustical imaging in biology and medical applications, and in near-field imaging of materials, were discussed. Based on its cross-disciplinary aspects, the authors of the papers of AI27 present experiments, theory and construction of new instruments. "
Among the variety of wave motions one can single out surface wave pr- agation since these surface waves often adjust the features of the energy transfer in the continuum (system), its deformation and fracture. Predicted by Rayleigh in 1885, surface waves represent waves localized in the vicinity ofextendedboundaries(surfaces)of?uidsorelasticmedia. Intheidealcase of an isotropic elastic half-space while the Rayleigh waves propagate along the surface, the wave amplitude (displacement) in the transverse direction exponentially decays with increasing distance away from the surface. As a resulttheenergyofsurfaceperturbationsislocalizedbytheRayleighwaves within a relatively narrow layer beneath the surface. It is this property of the surface waves that leads to the resonance phenomena that accompany the motion of the perturbation sources (like surface loads) with velocities close to the Rayleigh one; (see e. g. , R. V. Goldstein. Rayleigh waves and resonance phenomena in elastic bodies. Journal of Applied Mathematics and Mechanics (PMM), 1965, v. 29, N 3, pp. 608-619). It is essential to note that resonance phenomena are also inherent to the elastic medium in the case where initially there are no free (unloaded) surfaces. However, they occur as a result of an external action accompanied by the violation of the continuity of certain physical quantities, e. g. , by crack nucleation and dynamic propagation. Note that the aforementioned resonance phenomena are related to the nature of the surface waves as homogeneous solutions (eigenfunctions) of the dynamic elasticity equations for a half-space (i. e. nonzero solutions at vanishing boundary conditions).
This is an introduction to the branch of fluid mechanics concerned with the production of sound by hydrodynamic flows. It is designed for a one semester introductory course at the advanced undergraduate or graduate level. Great care is taken to explain underlying fluid mechanical and acoustic concepts, and to describe fully the steps in a complicated derivation. The discussion deals specifically with low Mach number flows, which enables the sound produced by `vortex-surface' interactions to be analyzed using the `compact Green's function'. This provides a routine procedure for estimating the sound, and an easy identification of those parts of a structure that are likely to be important sources of sound.
From Edison's invention of the phonograph through contemporary field recording and sound installation, artists have become attracted to those domains against which music has always defined itself: noise, silence, and environmental sound. Christoph Cox argues that these developments in the sonic arts are not only aesthetically but also philosophically significant, revealing sound to be a continuous material flow to which human expressions contribute but which precedes and exceeds those expressions. Cox shows how, over the course of the twentieth and twenty-first centuries, philosophers and sonic artists have explored this "sonic flux." Through the philosophical analysis of works by John Cage, Maryanne Amacher, Max Neuhaus, Christian Marclay, and many others, Sonic Flux contributes to the development of a materialist metaphysics and poses a challenge to the prevailing positions in cultural theory, proposing a realist and materialist aesthetics able to account not only for sonic art but for artistic production in general.
The investigation of nonlinear phenomena in acoustics has a rich history stretching back to the mechanical physical sciences in the nineteenth century. The study of nonlinear phenomena, such as explosions and jet engines, prompted the sharp growth of interest in nonlinear acoustic phenomena. In this book, the authors consider models of different "acoustic" media as well as equations and behavior of finite-amplitude waves. The authors also consider the effects of nonlinearity, dissipation, dispersion, and for two- and three-dimensional problems, reflection and diffraction on the evolution and interaction of acoustic beams. This book will be of interest not only to specialists in acoustics, but also to a wide audience of mathematicians, physicists, and engineers working on nonlinear waves in various physical systems.
Following the success of the first edition, this thoroughly updated second edition of "Image Processing: The Fundamentals" will ensure that it remains the ideal text for anyone seeking an introduction to the essential concepts of image processing. New material includes image processing and colour, sine and cosine transforms, Independent Component Analysis (ICA), phase congruency and the monogenic signal and several other new topics. These updates are combined with coverage of classic topics in image processing, such as orthogonal transforms and image enhancement, making this a truly comprehensive text on the subject. Key features: Presents material at two levels of difficulty: the main text addresses the fundamental concepts and presents a broad view of image processing, whilst more advanced material is interleaved in boxes throughout the text, providing further reference for those who wish to examine each technique in depth. Contains a large number of fully worked out examples. Focuses on an understanding of how image processing methods work in practice. Illustrates complex algorithms on a step-by-step basis, and lists not only the good practices but also identifies the pitfalls in each case. Uses a clear question and answer structure. Includes a CD containing the MATLAB(R) code of the various examples and algorithms presented in the book. There is also an accompanying website with slides available for download for instructors as a teaching resource. "Image Processing: The Fundamentals, Second Edition" is an ideal teaching resource for both undergraduate and postgraduate students. It will also be of value to researchers of various disciplines from medicine to mathematics with a professional interest in image processing
Quantum Theory, together with the principles of special and general relativity, constitute a scientific revolution that has profoundly influenced the way in which we think about the universe and the fundamental forces that govern it. The Historical Development of Quantum Theory is a definitive historical study of that scientific work and the human struggles that accompanied it from the beginning. Drawing upon such materials as the resources of the Archives for the History of Quantum Physics, the Niels Bohr Archives, and the archives and scientific correspondence of the principal quantum physicists, as well as Jagdish Mehra's personal discussions over many years with most of the architects of quantum theory, the authors have written a rigorous scientific history of quantum theory in a deeply human context. This multivolume work presents a rich account of an intellectual triumph: a unique analysis of the creative scientific process. The Historical Development of Quantum Theory is science, history, and biography, all wrapped in the story of a great human enterprise. Its lessons will be an aid to those working in the sciences and humanities alike.
Quantum Theory, together with the principles of special and general relativity, constitute a scientific revolution that has profoundly influenced the way in which we think about the universe and the fundamental forces that govern it. The Historical Development of Quantum Theory is a definitive historical study of that scientific work and the human struggles that accompanied it from the beginning. Drawing upon such materials as the resources of the Archives for the History of Quantum Physics, the Niels Bohr Archives, and the archives and scientific correspondence of the principal quantum physicists, as well as Jagdish Mehra's personal discussions over many years with most of the architects of quantum theory, the authors have written a rigorous scientific history of quantum theory in a deeply human context. This multivolume work presents a rich account of an intellectual triumph: a unique analysis of the creative scientific process. The Historical Development of Quantum Theory is science, history, and biography, all wrapped in the story of a great human enterprise. Its lessons will be an aid to those working in the sciences and humanities alike.
Turbulent Flows is an up-to-date and comprehensive graduate text on this important topic in fluid dynamics. The book consists of two parts: Part I provides a general introduction to turbulent flows, how they behave, how they can be described quantitatively, and their fundamental physical processes. Part II is concerned with different approaches for modeling, or simulating, turbulent flows. Key appendices present the necessary mathematical techniques. While primarily intended for engineering graduate students, this book will also be valuable to students in applied mathematics, physics, oceanography and atmospheric sciences, as well as to researchers and practicing engineers.
First published in 1967, Professor Batchelor's classic work is still one of the foremost texts on fluid dynamics. His careful presentation of the underlying theories of fluids is still timely and applicable, even in these days of almost limitless computer power. This reissue ensures that a new generation of graduate students experiences the elegance of Professor Batchelor's writing.
Many of the topics in inviscid fluid dynamics are not only vitally important mechanisms in everyday life but they are also readily observable without any need for instrumentation. It is therefore stimulating when the mathematics that emerges when these phenomena are modelled is novel and suggestive of alternative methodologies. This book provides senior undergraduates who are already familiar with inviscid fluid dynamics with some of the basic facts about the modelling and analysis of viscous flows. It clearly presents the salient physical ideas and the mathematical ramifications with exercises designed to be an integral part of the text. By showing the basic theoretical framework which has developed as a result of the study of viscous flows, the book should be ideal reading for students of applied mathematics who should then be able to delve further into the subject and be well placed to exploit mathematical ideas throughout the whole of applied science.
Many of the topics in inviscid fluid dynamics are not only vitally important mechanisms in everyday life but they are also readily observable without any need for instrumentation. It is therefore stimulating when the mathematics that emerges when these phenomena are modelled is novel and suggestive of alternative methodologies. This book provides senior undergraduates who are already familiar with inviscid fluid dynamics with some of the basic facts about the modelling and analysis of viscous flows. It clearly presents the salient physical ideas and the mathematical ramifications with exercises designed to be an integral part of the text. By showing the basic theoretical framework which has developed as a result of the study of viscous flows, the book should be ideal reading for students of applied mathematics who should then be able to delve further into the subject and be well placed to exploit mathematical ideas throughout the whole of applied science.
This book is a practical guide for researchers and advanced graduate students in biology and biophysics who need a quantitative understanding of acoustical systems such as hearing, sound production, and vibration detection in animals at the physiological level. It begins with an introduction to physical acoustics, covering the fundamental concepts and showing how they can be applied quantitatively to understand auditory and sound-producing systems in animals. Only after the relatively simple mechanical part of the system is explained does the author focus his attention on the underlying physiological processes. The book is written on three levels. For those wanting a brief survey of the field, each chapter begins with a nonmathematical synopsis which summarizes the content and refers to the figures, all of which are designed to be understood apart from the main text. At the next level, the reader can follow the main text, but need not give close attention to anything but the general concepts and techniques involved. At the third level, the reader should follow the mathematical arguments in detail and attempt the discussion of questions at the end of each chapter. The author has provided detailed solutions which serve to expand the discussions of particular cases.
This new book leads readers step-by-step through the complexities encountered as moving objects approach and cross the sound barrier. The problems of transonic flight were apparent with the very first experimental flights of scale-model rockets when the disastrous impact of shock waves and flow separations caused the aircraft to spin wildly out of control. Today many of these problems have been overcome, and this book offers an introduction to the transonic theory that has made possible many of these advances. The emphasis is on the most important basic approaches to the solution of transonic problems. The book also includes explanations of common pitfalls that must be avoided. An effort has been made to derive the most important equations of inviscid and viscous transonic flow in sufficient detail so that even novices may feel confident in their problem-solving ability. The use of computer approaches is reviewed, with references to the extensive literature in this area, while the critical shortcomings of an exclusive reliance on computational methods are also described. The book will be valuable to anyone who needs to acquire an understanding of transonic flow, including practicing engineers as well as students of fluid mechanics.
This textbook, addressed primarily to physics and engineering students, is a comprehensive introduction to waves and oscillations, both mechanical and electromagnetic. Elementary aspects of matter waves are also considered. One objective is to illustrate the physics involved in the description and analysis of waves through a wide range of examples, from purely mechanical and purely electromagnetic to coupled electro-mechanical waves, such as plasma oscillations and hydromagnetic waves. In this process, the use of complex amplitudes in the mathematical analysis is illuminated and encouraged to make tractable a wider range of problems than is ordinarily considered in an introductory text. General concepts and wave phenomena such as wave energy and momentum, interference, diffraction, scattering, dispersion, and the Doppler effect are illustrated by numerous examples and demonstrations. Among the special topics covered are waves on periodic structures and in solids, wave guides, a detailed analysis of light scattering from thermal fluctuations of a liquid surface, and feedback instabilities. Important ideas and equations are displayed in boxes for easy reference, and there are numerous examples throughout the text and exercises at the end of every chapter. Undergraduates and graduates should find this an indispensable account of this central subject in science and engineering.
This text considers waves the great unifying concept of physics.
With minimal mathematics, it emphasizes the behavior common to
phenomena such as earthquake waves, ocean waves, sound waves, and
mechanical waves. Topics include velocity, vector and complex
representation, energy and momentum, coupled modes, polarization,
diffraction, and radiation. 1974 edition.
Waves are essential phenomena in most scientific and engineering disciplines, such as electromagnetism and optics, and different mechanics including fluid, solid, structural, quantum, etc. They appear in linear and nonlinear systems. Some can be observed directly and others are not. The features of the waves are usually described by solutions to either linear or nonlinear partial differential equations, which are fundamental to the students and researchers.Generic equations, describing wave and pulse propagation in linear and nonlinear systems, are introduced and analyzed as initial/boundary value problems. These systems cover the general properties of non-dispersive and dispersive, uniform and non-uniform, with/without dissipations. Methods of analyses are introduced and illustrated with analytical solutions. Wave-wave and wave-particle interactions ascribed to the nonlinearity of media (such as plasma) are discussed in the final chapter.This interdisciplinary textbook is essential reading for anyone in above mentioned disciplines. It was prepared to provide students with an understanding of waves and methods of solving wave propagation problems. The presentation is self-contained and should be read without difficulty by those who have adequate preparation in classic mechanics. The selection of topics and the focus given to each provide essential materials for a lecturer to cover the bases in a linear/nonlinear wave course.
Barry Simon's book both summarizes and introduces the remarkable progress in constructive quantum field theory that can be attributed directly to the exploitation of Euclidean methods. During the past two years deep relations on both the physical level and on the level of the mathematical structure have been either uncovered or made rigorous. Connections between quantum fields and the statistical mechanics of ferromagnets have been established, for example, that now allow one to prove numerous inequalities in quantum field theory. In the first part of the book, the author presents the Euclidean methods on an axiomatic level and on the constructive level where the traditional results of the P(O)2 theory are translated into the new language. In the second part Professor Simon gives one of the approaches for constructing models of non-trivial, two-dimensional Wightman fields--specifically, the method of correlation inequalities. He discusses other approaches briefly. Drawn primarily from the author's lectures at the Eidenossiehe Technische Hochschule, Zurich, in 1973, the volume will appeal to physicists and mathematicians alike; it is especially suitable for those with limited familiarity with the literature of this very active field. Originally published in 1974. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Organized for self-paced study, this user-friendly book can easily be understood by designers with no engineering training. Provides excellent guidance concerning how design can be used to control noise, privacy and room acoustics within buildings. Contains a summary of the basic types of sound problems that occur in buildings.
"Corrosion of High-Performance Ceramics" is a comprehensive survey of the state of the art of this new field of research. It presents the first generalized description of the corrosion of engineering ceramics and its effect on their mechanical properties (based on Si3N4, SiC, AlN, B4C, BN, Al2O3, ZrO2). Researchers, engineers and graduate students are provided with a guide to the performance of non-oxide and oxide ceramicsin corrosive environments. Keywords: high-temperature oxidation; hot corrosion; corrosion in acids, alkalis and molten salts; effects of corrosion on the physico-mechanical properties of ceramics; stress corrosion; corrosion protection; development of oxidation-resistant ceramics; role of purity, donations and microstructure.
"Principles of Statistical Radiophysics" is a four-volume series that introduces the newcomer to the theory of random functions. It aims at providing the background necessary to understand papers and monographs on the subject and to carry out independant research in fields where fluctuations are of importance, e.g. radiophysics, optics, astronomy, and acoustics. Volume 2, "Correlation Theory of Random Processes," presents the correlation theory of nonstationary processes paying particular attention to periodically nonstationary processes. Physical phenomena like interference, coherence and polarisation of random oscillations, thermal noise in discrete dynamical systems, and the spectral representations of random actions on discrete systems are dealt with. |
![]() ![]() You may like...
This Is How It Is - True Stories From…
The Life Righting Collective
Paperback
Quantum Theory and Symmetries…
M.B. Paranjape, Richard MacKenzie, …
Hardcover
R6,461
Discovery Miles 64 610
Fundamentals of Femtosecond Optics
S. A. Kozlov, V.V. Samartsev
Hardcover
R3,263
Discovery Miles 32 630
|