![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Classical mechanics > Sound, vibration & waves (acoustics)
This book presents a set of basic understandings of the behavior and response of solids to propagating shock waves. The propagation of shock waves in a solid body is accompanied by large compressions, decompression, and shear. Thus, the shear strength of solids and any inelastic response due to shock wave propagation is of the utmost importance. Furthermore, shock compres sion of solids is always accompanied by heating, and the rise of local tempera ture which may be due to both compression and dissipation. For many solids, under a certain range of impact pressures, a two-wave structure arises such that the first wave, called the elastic prescursor, travels with the speed of sound; and the second wave, called a plastic shock wave, travels at a slower speed. Shock-wave loading of solids is normally accomplished by either projectile impact, such as produced by guns or by explosives. The shock heating and compression of solids covers a wide range of temperatures and densities. For example, the temperature may be as high as a few electron volts (1 eV = 11,500 K) for very strong shocks and the densification may be as high as four times the normal density.
This IMA Volume in Mathematics and its Applications DYNAMICAL ISSUES IN COMBUSTION THEORY is based on the proceedings of a workshop which was an integral part of the 1989-90 IMA program on "Dynamical Systems and their Applications." The aim of this workshop was to cross-fertilize research groups working in topics of current interest in combustion dynamics and mathematical methods applicable thereto. We thank Shui-Nee Chow, Martin Golubitsky, Richard McGehee, George R. Sell, Paul Fife, Amable Liiian and Foreman Williams for organizing the meeting. We especially thank Paul Fife, Amable Liiilin and Foreman Williams for editing the proceedings. We also take this opportunity to thank those agencies whose financial support made the workshop possible: the Army Research Office, the National Science Foundation and the Office of Naval Research. Avner Friedman Willard Miller, Jr. ix PREFACE The world ofcombustion phenomena is rich in problems intriguing to the math ematical scientist. They offer challenges on several fronts: (1) modeling, which involves the elucidation of the essential features of a given phenomenon through physical insight and knowledge of experimental results, (2) devising appropriate asymptotic and computational methods, and (3) developing sound mathematical theories. Papers in the present volume, which are based on talks given at the Workshop on Dynamical Issues in Combustion Theory in November, 1989, describe how all of these challenges have been met for particular examples within a number of common combustion scenarios: reactiveshocks, low Mach number premixed reactive flow, nonpremixed phenomena, and solid propellants."
One of the great twentieth-century achievements in the mechanics of fluids was the full elucidation of the physics of shock waves and the later comprehensive development of understanding of how shock waves propagate (i) through otherwise undisturbed fluid and (ii) in interaction either with solid bodies or with independently generated fluid flows. The interaction problems (ii) were soon found to raise some very special difficulties (beginning with the common formation of "Mach stems" in shock-wave reflection) yet they also turned out to possess enormous scientific interest as well as being highly important in practical applications. For all these reasons the appearance of this book on "Interaction of Shock Waves" by one of the world's major contributors to knowledge in that field is most particularly to be welcomed. It covers all those approaches to the subject which have been found fruitful, and most satisfactorily goes into comprehensive detail about each. At last the important achievements of the leading research workers, experimental as well as theoretical, on shockwave interaction problems are brought together in a single convenient and well written volume. I warmly congratulate the author and the publisher on having performed, for the benefit of everyone interested in the mechanics of fluids, this immensely valuable service.
Introduction to Digital Audio Coding and Standards provides a detailed introduction to the methods, implementations, and official standards of state-of-the-art audio coding technology. In the book, the theory and implementation of each of the basic coder building blocks is addressed. The building blocks are then fit together into a full coder and the reader is shown how to judge the performance of such a coder. Finally, the authors discuss the features, choices, and performance of the main state-of-the-art coders defined in the ISO/IEC MPEG and HDTV standards and in commercial use today. The ultimate goal of this book is to present the reader with a solid enough understanding of the major issues in the theory and implementation of perceptual audio coders that they are able to build their own simple audio codec. There is no other source available where a non-professional has access to the true secrets of audio coding.
The Royal Society has initiated a series of meetings to discuss the effect advances in technology will have on our way of life in the next century. The two previous meetings have been concerned with housing and waste treat ment. The subject of the third meeting, communications, is no less critical to life, but it offers particular problems and uncertainties, especially in the forecasting of future trends. Indeed, some have doubted if there can be profitable debate on long-term development in such a fast-moving field. The importance of the topic justifies an attempt, and the reader will judge whether the authors have met the challenge. Communications today bears little resemblance to that of the 1970s. Then we knew about satellites and optical fibres, and we had seen lasers and silicon chips, but most of us could never imagine the potential of the new technologies within our grasp. We had also not assessed the thirst of the popUlation for more and better ways of talking and writing to each other. It was the combination of market need and technical capability that created the com munications revolution.
The call for papers for the rUTAM-Symposium on Mechanics of Passive and Active Flow Control brought an overwhelming response of applications for contributions. Fi nally 12 invited lectures, 48 papers and 23 posters were selected by thc Scientific Com mittee to be presented in the conference. 58 papers are published in this volume. Due to the limited number of pages available, poster presentations could not be considered for publication. The editors would like to thank all the members of the Scientific Committee for their very valuable assistance. The papers presented at the rUT AM Symposium were classified under three groups de voted to * Passive Control Methods, * Active Control Methods and * Control Concepts. This was done to contrast at first between the passive techniques where the control power is mainly supplied by the flow itself and the active techniques where the power is pro vided by external sources; the third group was devoted to control concepts for presenting methods of control theory and new techniques of flow control.
This volume contains a multiplicity of approaches brought to bear on problems varying from the formation of caustics and the propagation of waves at a boundary, to the examination of viscous boundary layers. It examines the foundations of the theory of high- frequency electromagnetic waves in a dielectric or semiconducting medium. Nor are unifying themes entirely absent from nonlinear analysis: one chapter considers microlocal analysis, including paradifferential operator calculus, on Morrey spaces, and connections with various classes of partial differential equations.
Since the study of wavelets is a relatively new area, much of the research coming from mathematicians, most of the literature uses terminology, concepts and proofs that may, at times, be difficult and intimidating for the engineer. Wavelet Basics has therefore been written as an introductory book for scientists and engineers. The mathematical presentation has been kept simple, the concepts being presented in elaborate detail in a terminology that engineers will find familiar. Difficult ideas are illustrated with examples which will also aid in the development of an intuitive insight. Chapter 1 reviews the basics of signal transformation and discusses the concepts of duals and frames. Chapter 2 introduces the wavelet transform, contrasts it with the short-time Fourier transform and clarifies the names of the different types of wavelet transforms. Chapter 3 links multiresolution analysis, orthonormal wavelets and the design of digital filters. Chapter 4 gives a tour d'horizon of topics of current interest: wavelet packets and discrete time wavelet transforms, and concludes with applications in signal processing.
Blind Signal Separation (BSS) deals with recovering (filtered versions of) source signals from an observed mixture thereof. The term `blind' relates to the fact that there are no reference signals for the source signals and also that the mixing system is unknown. This book presents a new method for blind signal separation, which is developed to work on microphone signals. Acoustic Echo Cancellation (AEC) is a well-known technique to suppress the echo that a microphone picks up from a loudspeaker in the same room. Such acoustic feedback occurs for example in hands-free telephony and can lead to a perceived loud tone. For an application such as a voice-controlled television, a stereo AEC is required to suppress the contribution of the stereo loudspeaker setup. A generalized AEC is presented that is suited for multi-channel operation. New algorithms for Blind Signal Separation and multi-channel Acoustic Echo Cancellation are presented. A background is given in array signal processing methods, adaptive filter theory, and fast filtering in the frequency domain. The included CD-ROM can be played using any compact disc player to play the simulation results that are described in the text. When inserted into a computer, it furthermore gives Matlab implementations of the new algorithms along with audio data with which to experiment. This makes the book suited to researchers, engineers, and university students, who want to get acquainted with these emerging fields.
This book considers signal processing and physical modeling meth ods for sound synthesis. Such methods are useful for example in mu sic synthesizers, computer sound cards, and computer games. Physical modeling synthesis has been commercialized for the first time about 10 years ago. Recently, it has been one of the most active research topics in musical acoustics and computer music. The authors of this book, Dr. Lutz Trautmann and Dr. Rudolf Rabenstein, are active researchers and inventors in the field of sound synthesis. Together they have developed a new synthesis technique, called the functional transformation method, which can be used for pro ducing musical sound in real time. Before this book, they have published over 20 papers on the topic in journals and conference proceedings. In this excellent textbook, the results are combined in a single volume. I believe that this will be considered an important step forward for the whole community.
This eagerly awaited follow-up to Nonlinear Control Systems incorporates recent advances in the design of feedback laws, for the purpose of globally stabilizing nonlinear systems via state or output feedback. The author is one of the most prominent researchers in the field.
Surface Acoustic Waves in Inhomogeneous Media covers almost all important problems of the interaction of different types of surface acoustic waves with surface inhomogeneities. The problems of surface acoustic wave interaction with periodic topographic gratings widely used in filters and resonators are under careful consideration. The most important results of surface wave scattering by local defects such as grooves, random roughness, elastic wedges are given. Different theoretical approaches and practical rules for solving the surface wave problems are presented.
This volume is concerned primarily with the chemical and physical effects of shock waves on typical materials. It compares naturally occurring materials with similar materials produced by shock compression in the laboratory, providing clues about the environment and events that produced the natural materials.
The increasing prevalence of musical stimulation in our everyday environment makes studies of musical listening, comprehension and memory important. Music has simply become a pervasive aspect of the experienced environment for most of us; along with enhanced levels of machine sounds, musical sound sources are contributing to a virtual transformation of contemporary soundscapes occurring in many industrial countries. In spite of such trends, arguably the mainstream research in psychology and related fields has been slow to devote concentrated attention to this phenomenon and what it might mean. As a result, with respect to more established fields of research (e.g., visual perception, speech perception, attention and memory etc.), less is known about how people perceive and respond to complex, non-random, acoustic signals found in musical events. Although these topics reside in the domain of music research, this field is a relatively new one, with a history that dates back only about 25 years. Nevertheless, it is now a vibrant and rapidly growing field that draws from multiple disciplines (psychology, psychoacoustics, computer science, music theory, and so forth) to seek answers to questions about how we listen to musical events in our world. It tackles questions about pitch perception in complex patterns, about the role of tonal schemes as well as effects of metrical and rhythmic schemes on musical listening behaviors. It also examines abilities of children and adults to perceive and comprehend dynamic sound patterns. Emotional responses to music are also studied; and overarching all of this are exciting new neuroscience findings concerned with neural responses to musical events. Music Perception introduces its audience to these and related basic issues concerned with listening to music. It also illustrates how knowledge about music perception may ultimately lead to a broader understanding of conventional concepts regarding perception, attention and memory.
Materials that can mold the ?ow of elastic waves of certain energy in certain directions are called phononic materials. The present thesis deals essentially with such phononic systems, which are structured in the mesoscale (\1 lm), and with their individual components. Such systems show interesting phononic properties in the hypersonic region, i.e., at frequencies in the GHz range. It is shown that colloidal systems are excellent model systems for the realization of such phononic materials. Therefore, different structures and particle architectures are investigated by Brillouin light scattering, the inelastic scattering of light by phonons. Both the mechanical properties of the individual colloidal particles, which manifest in their resonance vibrations (eigenmodes), as well as the acoustic propagation in colloidal structures have been investigated. The measurement of the eigenmodes allows for new insights into physical properties at the mesoscale, e.g., con?nement effects, copolymer behavior, or the non-destructive determination of nanomechanical properties of core-shell particles, supporting the working groups aim to achieve a deeper understanding of 'soft mechanics' at small length scales. Another novel contribution assigned to this thesis is the ?rst experimental rea- zation of a phononic band gap arising from the interaction of these particle - genmodes with the effective medium band (hybridization gap). This ?nding already gave new impulses to the whole ?eld of phononics.
By providing all the basic knowledge needed to assess how useful active noise control will be for a given problem, this book assists in the designing, setting up, and tuning of an active noise-control system. Written for students who have no prior knowledge of acoustics, signal processing, or noise control but who do have a reasonable grasp of basic physics and mathematics, the text is short and descriptive, leaving all mathematical details and proofs concerning vibrations, signal processing and the like to more advanced texts or research monographs. The book can thus be used in independent study, in a classroom with laboratories, or in conjunction with a kit for experiment or demonstration. Topics covered include basic acoustics, human perception and sound, sound intensity and related concepts, fundamentals of passive noise- control strategies, basics of digital systems and adaptive controllers, and active noise control systems.
The problems of transient interaction of deformable bodies with surrounding media are of great practical and theoretical importance. When solving the problems of this kind, the main difficulty is in the necessity to integrate jointly the system of equations which describe motion of the body and the system of equations which describe motion of the medium under the boundary conditions predetermined at the unknown (movable) curvilinear interfaces. At that, the position of these interfaces should be determined as part of the solution process. That is why, the known exact solutions in this area of mechanics of continuum have been derived mainly for the cases of idealized rigid bodies. Different aspects of the problems of transient interaction of bodies and structures with continuum (derivation of the efficient mathematical mod els for the phenomenon, development of the theoretical and experimental methods to be used for study of the transient problems of mechanics, etc.) were considered in the books by S.U. Galiev, A.N. Guz, V.D. Kubenko, V.B. Poruchikov, L.L Slepyan, A.S. Volmir, and Yu.S. Yakovlev. The results presented by these authors make interest when solving a great variety of problems and show a necessity of joint usage of the results obtained in differ ent areas: aerohydrodynamics, theory of elasticity and plasticity, mechanics of soils, theory of shells and plates, applied and computational mathemat ics, etc.
System Theory: Modeling, Analysis and Control contains thirty-three scientific papers covering a wide range of topics in systems and control. These papers have been contributed to a symposium organized to celebrate Sanjoy K. Mitter's 65th birthday. The following research topics are addressed: distributed parameter systems, stochastic control, filtering and estimation, optimization and optimal control, image processing and vision, hierarchical systems and hybrid control, nonlinear systems, and linear systems. Also included are three survey papers on optimization, nonlinear filtering, and nonlinear systems. Recent advances are reported on the behavioral approach to systems, the relationship between differential games and robust control, estimation of diffusion processes, Markov processes, optimal control, hybrid control, stochastic control, spectral estimation, nonconvex quadratic programming, robust control, control algorithms and quantized linear systems. Innovative explorations are carried out on quantum systems from a control theory perspective, option valuation and hedging, three-dimensional medical visualization, computational structure biology image processing, and hierarchical approaches to complex systems, flow control, scheduling and force feedback in fluid mechanics. The contents reflect on past research accomplishments, current research activity, and future research directions in systems and control theory.
This document was commissioned by the Facility Guidelines Institute as the sole reference for acoustics in health care facilities. It was written by the Health Care Acoustics Working Group, a permanent committee of the Acoustics Research Council (ARC), comprised of members of leading professional societies in acoustics, noise control engineering, acoustical consulting and related professions. ARC organized the health care Working Group in 2004-5 drawing its members from ten constituencies that range from medicine to law, public policy, architecture, design and engineering in order to provide constructive, guidance on sound and vibration based on research and best practices. "Sound and Vibration 2.0" has been adopted as the sole reference standard for acoustics in health care facilities by: the 2010 FGI/ASHE "Guidelines for the Design and Construction of Healthcare Facilities" (used in 60 countries); the US Green Building Council s "LEED for Healthcare" (used in 87 countries); The Green Guide for Health Care V2.2; and the International Code Council's IGCC (2011). Sound and vibration are topics of increasing prominence in the design, construction, and operation of healthcare facilities. A satisfactory acoustical environment in a healthcare facility is now viewed as an essential component of effective healthcare. Sensible acoustical and privacy planning in the early design stages of a healthcare facility project can be solved effectively and affordably with a few strokes of the designer's pencil. The recommended minimum design requirements presented in this work are therefore intended to aid designers in achieving satisfactory acoustical and privacy environments in healthcare facilities. This handbook includes comprehensive, practical, and measureable guidelines for all aspects of acoustics in the design, construction, and evaluation of all types of healthcare facilities, including large general hospitals, specialized patient care facilities, and ambulatory patient care facilities.
In recent years, research on acoustic remote sensing of the ocean has evolved considerably, especially in studying complex physical and biological processes in shallow water environments. To review the state of the art, an international workshop was held at Carvoeiro, Portugal, in March 1999, bringing together leading international researchers in the field. In contrast to much of the recent theoretical work, emphasis was placed on the experimental validation of the techniques. This volume, based on presentations at this workshop, summarizes a range of diverse and innovative applications. The invited contributions explore the use of acoustics to measure bottom properties and morphology, as well as to probe buried objects within the sediment. Within the water column, sound is applied to imaging of oceanographic features such as currents and tides or monitoring of marine life. Another key theme is the use of sound to solve geometric inverse problems for precise tracking of undersea vehicles. Audience: This volume should be useful both to the novice seeking an introduction to the field and to advanced researchers interested in the latest developments in acoustic sensing of the ocean environment. The workshop was sponsored by the Fundacao para a Ciecia e a Tecnologia (Portuguese Foundation for Science and Technology).
Proceeding from basic theory to design studies of concert and multiple purpose halls, the author introduces a remarkable seat selection system for the analysis of new and existing halls, and proposes a diagnostic system for testing the physical properties and calculating the psychological attributes at any seat after a hall is built. The book also presents a theory of subjective preferences, based on a model of the auditory cognitive system in the brain. Readers can thus follow the temporal and spatial values that may be associated with the left and right cerebral hemispheres in listening to music and speech, respectively, in a room. From the results of calculating subjective preference at each seat, for example, architects, musicians, and acoustical engineers concerned with the design and use of concert and multi-use halls may determine the best location to perform a certain type of music on the stage, as well as the best seats from which to listen.
In 1945, Dr. Ernst Weber founded, and was the first Director of, the Microwave Research Institute (MRI) at Polytechnic University (at that time named the Polytechnic Institute of Brooklyn). MRI gained worldwide recognition in the 50s and 60s for its research in electromagnetic theory, antennas and radiation, network theory and microwave networks, microwave components, and devices. It was also known through its series of 24 topical symposia and the widely distributed hardbound MRI Symposium Proceedings. Rededicated as the Weber Research Institute (WRI) in 1986, the institute currently conducts research in such areas as electromagnetic propagation and antennas, ultrabroadband electromagnetics, pulse power, acoustics, gaseous electronics, plasma physics, solid-state materials, quantum electronics, electromagnetic launchers, and networks. Following MRI tradition, WRI has launched its own series of in-depth topical conferences with published proceedings. Previous conferences in this series were: Directions in Electromagnetic Wave Modeling; October 1990 Ultra-Wideband Short-Pulse Electromagnetics; October, 1992 Ultra-Wideband Short-Pulse Electromagnetics, II; October, 1994 The proceedings of these conferences were also published by Plenum Press. This volume constitutes the proceedings of the fourth WRI International Conference dealing with Guided-Wave Optoelectronics: Device Characterization, Analysis and Design. The conference was held October 26-28, 1994, at the Polytechnic University in Brooklyn, New York, in cooperation with the IEEE Lasers and Electro Optics Society, and with the Optical Society of America. Theodor Tamir Giora Griffel Henry L. Bertoni v CONTENTS INTRODUCTORY Scanning the symposium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . T. Tamir and G. Griffel Photonics in telecommunications. . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . . . H."
This book presents the notes from the seminar on wave phenomena given in 2019 at the Mathematical Research Center in Oberwolfach. The research on wave-type problems is a fascinating and emerging field in mathematical research with many challenging applications in sciences and engineering. Profound investigations on waves require a strong interaction of several mathematical disciplines including functional analysis, partial differential equations, mathematical modeling, mathematical physics, numerical analysis, and scientific computing. The goal of this book is to present a comprehensive introduction to the research on wave phenomena. Starting with basic models for acoustic, elastic, and electro-magnetic waves, topics such as the existence of solutions for linear and some nonlinear material laws, efficient discretizations and solution methods in space and time, and the application to inverse parameter identification problems are covered. The aim of this book is to intertwine analysis and numerical mathematics for wave-type problems promoting thus cooperative research projects in this field.
Focusing on recent developments in the area of seismic wave propagation and scattering, this text combines information from numerous sources to present a coherent introduction to the theory of scattering in acoustic and elastic materials. With the emphasis firmly on the lithosphere, the book includes analyses of observations using the theoretical methods developed. Written for advanced undergraduates and beginning graduates of geophysics and planetary sciences, this is also of interest to civil engineers, seismologists, acoustical engineers, and others interested in wave propagation through inhomogeneous elastic media.
The Seventh Rochester Conference on Coherence and Quantum Optics was held on the campus of the University of Rochester during the four-day period June 7 - 10, 1996. More than 280 scientists from 33 countries participated. This book contains the Proceedings of the meeting. This Conference differed from the previous six in the series in having only a limited number of oral presentations, in order to avoid too many parallel sessions. Another new feature was the introduction of tutorial lectures. Most contributed papers were presented in poster sessions. The Conference was sponsored by the American Physical Society, by the Optical Society of America, by the International Union of Pure and Applied Physics and by the University of Rochester. We wish to express our appreciation to these organizations for their support and we especially extend our thanks to the International Union of Pure and Applied Physics for providing financial assistance to a number of speakers from Third World countries, to enable them to take part in the meeting. |
![]() ![]() You may like...
X-Kit Presteer Essensiele Verwysings…
M Peacock, R. Scheepers, …
Paperback
![]() R274 Discovery Miles 2 740
Adaptive Web Services for Modular and…
Guadalupe Ortiz, Javier Cubo
Hardcover
R5,639
Discovery Miles 56 390
Disaster and Development - The Politics…
Neil Middleton, Phil O'Keefe
Paperback
R824
Discovery Miles 8 240
|