![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Classical mechanics > Sound, vibration & waves (acoustics)
Aerodynamic Noise extensively covers the theoretical basis and mathematical modeling of sound, especially the undesirable sounds produced by aircraft. This noise could come from an aircraft's engine-propellers, fans, combustion chamber, jets-or the vehicle itself-external surfaces-or from sonic booms. The majority of the sound produced is due to the motion of air and its interaction with solid boundaries, and this is the main discussion of the book. With problem sets at the end of each chapter, Aerodynamic Noise is ideal for graduate students of mechanical and aerospace engineering. It may also be useful for designers of cars, trains, and wind turbines.
This definitive textbook provides students with a comprehensive introduction to acoustics. Beginning with the basic physical ideas, Acoustics balances the fundamentals with engineering aspects, applications and electroacoustics, also covering music, speech and the properties of human hearing. The concepts of acoustics are exposed and applied in:
Scientifically thorough, but with mathematics kept to a minimum, Acoustics is the perfect introduction to acoustics for students at any level of mechanical, electrical or civil engineering courses and an accessible resource for architects, musicians or sound engineers requiring a technical understanding of acoustics and their applications.
"Provides a lot of reading pleasure and many new insights." —Journal of Molecular Structure "This is the most entertaining, stimulating and useful book which can be thoroughly recommended to anyone with an interest in computer simulation." —Contemporary Physics "A very useful introduction . . . more interesting to read than the often dry equation-based texts." —Journal of the American Chemical Society Written especially for the novice, Molecular Dynamics Simulation demonstrates how molecular dynamics simulations work and how to perform them, focusing on how to devise a model for specific molecules and then how to simulate their movements using a computer. This book provides a collection of methods that until now have been scattered through the literature of the last 25 years. It reviews elements of sampling theory and discusses how modern notions of chaos and nonlinear dynamics explain the workings of molecular dynamics. Stresses easy-to-use molecules
Advanced Applications in Acoustics, Noise and Vibration provides comprehensive and up-to-date overviews of knowledge, applications and research activities in a range of topics that are of current interest in the practice of engineering acoustics and vibration technology. The thirteen chapters are grouped into four parts: signal processing, acoustic modelling, environmental and industrial acoustics, and vibration. Following on from its companion volume Fundamentals of Noise and Vibration this book is based partly on material covered in a selection of elective modules in the second semester of the Masters programme in 'Sound and Vibration Studies' of the Institute of Sound and Vibration Research at the University of Southampton, UK and partly on material presented in the annual ISVR short course 'Advanced Course in Acoustics, Noise and Vibration'.
Up-to-date coverage of the analysis and applications of coplanar waveguides to microwave circuits and antennas The unique feature of coplanar waveguides, as opposed to more conventional waveguides, is their uniplanar construction, in which all of the conductors are aligned on the same side of the substrate. This feature simplifies manufacturing and allows faster and less expensive characterization using on-wafer techniques. Coplanar Waveguide Circuits, Components, and Systems is an engineer’s complete resource, collecting all of the available data on the subject. Rainee Simons thoroughly discusses propagation parameters for conventional coplanar waveguides and includes valuable details such as the derivation of the fundamental equations, physical explanations, and numerical examples. Coverage also includes:
Acoustics of Nanodispersed Magnetic Fluids presents key information on the acoustic properties of magnetic fluids. The book is based on research carried out by the author as well as on many publications in both the Russian and foreign scientific literature from 1969 onwards. It describes a wide variety of topics, which together lay the foundation of a new scientific research area: the acoustics of nanodispersed media. The book examines the nanoscale structure of matter in specific areas and discusses the following: Model theory and known features of the propagation of sound waves in magnetised fluids Acoustomagnetic and magnetoacoustic effects in magnetic fluids Acoustomagnetic spectroscopy of vibrational modes in the liquid-shell system Vibration and rheological effects of magnetised magnetic fluids Acoustometry of the shape of magnetic nanoaggregates and non-magnetic microaggregates Acoustogranulometry, a new method for studying the physical properties of magnetic nanoparticles dispersed in a carrier fluid The book is a valuable resource for engineers and researchers in the fields of acoustics, physical acoustics, magnetic hydrodynamics, and rheology physics. The experimental methods, which are described in this book, are based on incompatible features of magnetic fluids, i.e. strong magnetism, fluidity and compressibility. As a result, this can find industrial application in advanced technology. It is also useful for both advanced undergraduate and graduate students studying nanotechnology, materials science, physical and applied acoustics.
INTRODUCTORY APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS In addition, this text includes a supplementary chapter of selected topics and handy appendices that review Fourier Series, Laplace Transform, Sturm-Liouville Equations, Bessel Functions, and Legendre Polynomials.
This text is written by researchers at BT Laboratories and at universities who have investigated a set of problems in vision, speech and natural language. It presents a diversity of approaches to the solution of these problems, based on a range of neural network paradigms. The book also includes sections on implementation, which discuss some approaches to hardware realization; and architectures, which describe new ideas and algorithms. The findings discussed here should be of interest not only to those working in the applications areas discussed, but also to people working more widely in the field of neural networks. This book should be of interest to working researchers and graduate students in neural networks.
A bestseller in its first edition, Wavelets and Other Orthogonal Systems: Second Edition has been fully updated to reflect the recent growth and development of this field, especially in the area of multiwavelets. The authors have incorporated more examples and numerous illustrations to help clarify concepts. They have also added a considerable amount of new material, including sections addressing impulse trains, an alternate approach to periodic wavelets, and positive wavelet s. Other new discussions include irregular sampling in wavelet subspaces, hybrid wavelet sampling, interpolating multiwavelets, and several new statistics topics.
This open access book provides a concise explanation of the fundamentals and background of the surround sound recording and playback technology Ambisonics. It equips readers with the psychoacoustical, signal processing, acoustical, and mathematical knowledge needed to understand the inner workings of modern processing utilities, special equipment for recording, manipulation, and reproduction in the higher-order Ambisonic format. The book comes with various practical examples based on free software tools and open scientific data for reproducible research. The book's introductory section offers a perspective on Ambisonics spanning from the origins of coincident recordings in the 1930s to the Ambisonic concepts of the 1970s, as well as classical ways of applying Ambisonics in first-order coincident sound scene recording and reproduction that have been practiced since the 1980s. As, from time to time, the underlying mathematics become quite involved, but should be comprehensive without sacrificing readability, the book includes an extensive mathematical appendix. The book offers readers a deeper understanding of Ambisonic technologies, and will especially benefit scientists, audio-system and audio-recording engineers. In the advanced sections of the book, fundamentals and modern techniques as higher-order Ambisonic decoding, 3D audio effects, and higher-order recording are explained. Those techniques are shown to be suitable to supply audience areas ranging from studio-sized to hundreds of listeners, or headphone-based playback, regardless whether it is live, interactive, or studio-produced 3D audio material.
With the appearance and fast evolution of high performance
materials, mechanical, chemical and process engineers cannot
perform effectively without fluid processing knowledge. The purpose
of this book is to explore the systematic application of basic
engineering principles to fluid flows that may occur in fluid
processing and related activities.
This textbook is the student edition of the work on vibrations, dynamics and structural systems. There are exercises included at the end of each chapter.
Trevor Cox is on a hunt for the sonic wonders of the world. A renowned expert who engineers classrooms and concert halls, Cox has made a career of eradicating bizarre and unwanted sounds. But after an epiphany in the London sewers, Cox now revels in exotic noises creaking glaciers, whispering galleries, stalactite organs, musical roads, humming dunes, seals that sound like alien angels, and a Mayan pyramid that chirps like a bird. With forays into archaeology, neuroscience, biology, and design, Cox explains how sound is made and altered by the environment, how our body reacts to peculiar noises, and how these mysterious wonders illuminate sound s surprising dynamics in everyday settings from your bedroom to the opera house. The Sound Book encourages us to become better listeners in a world dominated by the visual and to open our ears to the glorious cacophony all around us."
This best-selling book introduces a broad audience including scientists and engineers working in a variety of fields as well as mathematicians from other subspecialties to one of the most active new areas of applied mathematics and the story of its discovery and development. Organized in "hypertext fashion," the book tells a story of scientific discovery with separate brief entries for technical terms and explicit appendices in a section called "Beyond Plain English."
Noise is everywhere and in most applications that are related to audio and speech, such as human-machine interfaces, hands-free communications, voice over IP (VoIP), hearing aids, teleconferencing/telepresence/telecollaboration systems, and so many others, the signal of interest (usually speech) that is picked up by a microphone is generally contaminated by noise. As a result, the microphone signal has to be cleaned up with digital signal processing tools before it is stored, analyzed, transmitted, or played out. This cleaning process is often called noise reduction and this topic has attracted a considerable amount of research and engineering attention for several decades. One of the objectives of this book is to present in a common framework an overview of the state of the art of noise reduction algorithms in the single-channel (one microphone) case. The focus is on the most useful approaches, i.e., filtering techniques (in different domains) and spectral enhancement methods. The other objective of Noise Reduction in Speech Processing is to derive all these well-known techniques in a rigorous way and prove many fundamental and intuitive results often taken for granted. This book is especially written for graduate students and research engineers who work on noise reduction for speech and audio applications and want to understand the subtle mechanisms behind each approach. Many new and interesting concepts are presented in this text that we hope the readers will find useful and inspiring.
Intended for coastal engineers and marine scientists who desire to develop a fundamental physical understanding of ocean waves and be able to apply this knowledge to ocean and coastal analysis and design. Provides an introduction to the physical processes of ocean wave mechanics, an understanding of the basic techniques for wave analysis, techniques for practical calculation and prediction of waves and applied wave forecasting.
Audio for Television outlinines all the relevant principles and practices. Newcomers to the field will find it an invaluable, up to date resource and experienced sound people will gain from the explanations of new technology. The rate of change in the technology of television sound has recently accelerated to such a degree that it is now a sufficiently expansive subject to warrant a book of its own. These rapid changes, from the introduction first of stereo, then multi-channel or surround sound, have made it difficult for those working in this field to keep up with the technology and even harder for those just setting out on a career in television sound. The book considers analog and digital audio as alternatives and stresses the advantages of both. Microphone and loudspeaker technology is also discussed in some detail and audio recording and routing and transmission are also covered.
First Published in 1997. Routledge is an imprint of Taylor & Francis, an informa company.
Wavelet theory had its origin in quantum field theory, signal analysis, and function space theory. In these areas wavelet-like algorithms replace the classical Fourier-type expansion of a function. This unique new book is an excellent introduction to the basic properties of wavelets, from background math to powerful applications. The authors provide elementary methods for constructing wavelets, and illustrate several new classes of wavelets. The text begins with a description of local sine and cosine bases that have been shown to be very effective in applications. Very little mathematical background is needed to follow this material. A complete treatment of band-limited wavelets follows. These are characterized by some elementary equations, allowing the authors to introduce many new wavelets. Next, the idea of multiresolution analysis (MRA) is developed, and the authors include simplified presentations of previous studies, particularly for compactly supported wavelets. Some of the topics treated include: Several bases generated by a single function via translations and dilations Multiresolution analysis, compactly supported wavelets, and spline wavelets Band-limited wavelets Unconditionality of wavelet bases Characterizations of many of the principal objects in the theory of wavelets, such as low-pass filters and scaling functions The authors also present the basic philosophy that all orthonormal wavelets are completely characterized by two simple equations, and that most properties and constructions of wavelets can be developed using these two equations. Material related to applications is provided, and constructions of splines wavelets are presented. Mathematicians, engineers, physicists, and anyone with a mathematical background will find this to be an important text for furthering their studies on wavelets.
This detail-oriented text is intended for engineers and applied mathematicians who must write computer programs to perform wavelet and related analysis on real data. It contains an overview of mathematical prerequisites and proceeds to describe hands-on programming techniques to implement special programs for signal analysis and other applications. From the table of contents: - Mathematical Preliminaries - Programming Techniques - The Discrete Fourier Transform - Local Trigonometric Transforms - Quadrature Filters - The Discrete Wavelet Transform - Wavelet Packets - The Best Basis Algorithm - Multidimensional Library Trees - Time-Frequency Analysis - Some Applications - Solutions to Some of the Exercises - List of Symbols - Quadrature Filter Coefficients
Spectral Theory of Guided Waves represents a distillation of the authors' (and others) efforts over several years to rigorously discuss many of the properties of guided waves. The bulk of the book deals with the properties of eigenwaves of regular waveguiding systems and relates these to a variety of physical situations and applications to illustrate their generality. The book also includes considerable discussion of the basic properties of normal waves with quadratic operator pencils. Unique in its coverage of these subjects, the book will be of interest to engineers, applied mathematicians, and physicists with a working knowledge of functional analysis and spectral theory.
Nonlinear Waves in Elastic Media explores the theoretical results
of one-dimensional nonlinear waves, including shock waves, in
elastic media. It is the first book to provide an in-depth and
comprehensive presentation of the nonlinear wave theory while
taking anisotropy effects into account. The theory is completely
worked out and draws on 15 years of research by the authors, one of
whom also wrote the 1965 classic Magnetohydrodynamics.
Techniques and Topics in Flow Measurement covers the applications
and techniques of flow measurement. This definitive book provides
guidelines for choosing appropriate techniques and assuring valid
measurements as well as describes methods for treatment of
calibration data in fluid flow under various conditions. The book
also covers three systems of units: the SI system, the English
Absolute Dimensional system, and the English Engineering system.
Commonly used - and often misused - variables such as force,
weight, and pressure are defined, and the relationships between the
systems for these common variables are summarized.
Providing a wealth of information on fundamental topics in the areas of linear air and underwater acoustics, as well as space-time signal processing, this book provides real-world design and analysis equations. As a consequence of the interdisciplinary nature of air and underwater acoustics, the book is divided into two parts: Acoustic Field Theory and Space-Time Signal Processing. It covers the fundamentals of acoustic wave propagation as well as the fundamentals of aperture theory, array theory, and signal processing. Starting with principles and using a consistent, mainly standard notation, this book develops, in detail, basic results that are useful in a variety of air and underwater acoustic applications. Numerous figures, examples, and problems are included. |
![]() ![]() You may like...
|