![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Classical mechanics > Sound, vibration & waves (acoustics)
This book, the first dedicated to the topic, provides a comprehensive treatment of forward stimulated Brillouin scattering (SBS) in standard optical fibers. SBS interactions between guided light and sound waves have drawn much attention for over fifty years, and optical fibers provide an excellent playground for the study of Brillouin scattering as they support guided modes of both wave types and provide long interaction lengths. This book is dedicated to forward SBS processes that are driven by co-propagating optical fields. The physics of forward SBS is explained in detail, starting from the fundamentals of interactions between guided optical and acoustic waves, with emphasis given to the acoustic modes that are stimulated in the processes. The realization of forward SBS in standard single-mode, polarization-maintaining and multi-core fibers is then discussed in depth. Innovative potential applications in sensors, monitoring of coating layers, lasers, and radio-frequency oscillators are presented. This book introduces the subject to graduate students in optics and applied physics, and it will be of interest to scientists working in fiber-optics, nonlinear optics and opto-mechanics. Provides the first treatment of forward stimulated Brillouin scattering (SBS) in book form; Reflects the dramatic recent increase in interest in forward SBS processes , driven in part by the promise of new fiber sensing concepts; Delivers a solid and comprehensive grounding in the physics of forward SBS along with detailed experimental set-ups, measurement protocols, and applications.
This book is primarily concerned with turbulence in superfluid helium. Quantized vorticity has traditionally generated great interest among physicists, but there are now also important engineering applications such as liquid helium cooling of superconducting magnets. Presently much research is done on the relationship between superfluid turbulence and classical turbulence, as intense turbulence can be generated in liquid helium due to its small kinematic viscosity. There is also a close relationship between superfluid behaviour and quantized vorticity in liquid helium and in atomic Bose--Einstein condensates. Putting special emphasis on the interplay between the different disciplines involved, this readable account of recent research will appeal not only to established researchers but also to newcomers and graduate students wishing to enter the field.
Karlheinz Brandenburg and Mark Kahrs With the advent of multimedia, digital signal processing (DSP) of sound has emerged from the shadow of bandwidth limited speech processing. Today, the main appli cations of audio DSP are high quality audio coding and the digital generation and manipulation of music signals. They share common research topics including percep tual measurement techniques and analysis/synthesis methods. Smaller but nonetheless very important topics are hearing aids using signal processing technology and hardware architectures for digital signal processing of audio. In all these areas the last decade has seen a significant amount of application oriented research. The topics covered here coincide with the topics covered in the biannual work shop on "Applications of Signal Processing to Audio and Acoustics." This event is sponsored by the IEEE Signal Processing Society (Technical Committee on Audio and Electroacoustics) and takes place at Mohonk Mountain House in New Paltz, New York. A short overview of each chapter will illustrate the wide variety of technical material presented in the chapters of this book. John Beerends: Perceptual Measurement Techniques. The advent of perceptual measurement techniques is a byproduct of the advent of digital coding for both speech and high quality audio signals. Traditional measurement schemes are bad estimates for the subjective quality after digital coding/decoding. Listening tests are subject to sta tistical uncertainties and the basic question of repeatability in a different environment.
This volume contains the Proceedings of the IUTAM Symposium on Mechanics of Passive and Active Flow Control, held at the DLR, GAttingen, in September 1998. This follows an earlier IUTAM Symposium on Turbulence Management and Relaminarisation which was held in Bangalore in 1987. The last decade has witnessed significant advances and research activity in the area of flow control/management, triggered by technological applications as well as scientific curiosity in understanding the structure of complex flows. This volume contains both review and contributed papers in the area of flow control, with emphasis on fluid dynamical mechanisms underlying different passive and active control techniques used in a variety of flows such as bumps, roughnesses, riblets, vortex generators, suction blowing, sound and MEMS; issues such as new control concepts and control strategies are also addressed. The application areas include drag reduction, transition, turbulence and separation, many relevant to aeronautical systems. This volume is very timely and contains a wealth of information on current research in the broad subject of flow control concepts and applications; it should be of particular interest to scientists, engineers and students pursuing research in flow control.
This book has been written for graduate students, scientists and engineers who need in-depth theoretical foundations to solve two-phase problems in various technological systems. Based on extensive research experiences focused on the fundamental physics of two-phase flow, the authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to a variety of scenarios, including nuclear reactor transient and accident analysis, energy systems, power generation systems and even space propulsion.
Acoustic Signal Processing for Ocean Explortion has two major goals: (i) to present signal processing algorithms that take into account the models of acoustic propagation in the ocean and; (ii) to give a perspective of the broad set of techniques, problems, and applications arising in ocean exploration. The book discusses related issues and problems focused in model based acoustic signal processing methods. Besides addressing the problem of the propagation of acoustics in the ocean, it presents relevant acoustic signal processing methods like matched field processing, array processing, and localization and detection techniques. These more traditional contexts are herein enlarged to include imaging and mapping, and new signal representation models like time/frequency and wavelet transforms. Several applied aspects of these topics, such as the application of acoustics to fisheries, sea floor swath mapping by swath bathymetry and side scan sonar, autonomous underwater vehicles and communications in underwater are also considered.
The current popular and scientific interest in virtual environments has provided a new impetus for investigating binaural and spatial hearing. However, the many intriguing phenomena of spatial hearing have long made it an exciting area of scientific inquiry. Psychophysical and physiological investigations of spatial hearing seem to be converging on common explanations of underlying mechanisms. These understandings have in turn been incorporated into sophisticated yet mathematically tractable models of binaural interaction. Thus, binaural and spatial hearing is one of the few areas in which professionals are soon likely to find adequate physiological explanations of complex psychological phenomena that can be reasonably and usefully approximated by mathematical and physical models. This volume grew out of the Conference on Binaural and Spatial Hearing, a four-day event held at Wright-Patterson Air Force Base in response to rapid developments in binaural and spatial hearing research and technology. Meant to be more than just a proceedings, it presents chapters that are longer than typical proceedings papers and contain considerably more review material, including extensive bibliographies in many cases. Arranged into topical sections, the chapters represent major thrusts in the recent literature. The authors of the first chapter in each section have been encouraged to take a broad perspective and review the current state of literature. Subsequent chapters in each section tend to be somewhat more narrowly focused, and often emphasize the authors' own work. Thus, each section provides overview, background, and current research on a particular topic. This book is significant in that it reviews the important work during the past 10 to 15 years, and provides greater breadth and depth than most of the previous works.
Caustics, Catastrophes and Wave Fields in a sense continues the treatment of the earlier volume 6 "Geometrical Optics of Inhomogeneous Media" in the present book series, by analysing caustics and their fields on the basis of modern catastrophe theory. This volume covers the key generalisations of geometrical optics related to caustic asymptotic expansions: The Lewis-Kravtsov method of standard functions, Maslov's method of caonical operators, Orlov's method of interference integrals, as well as their modifications for penumbra, space-time, random and other types of caustics. All the methods are amply illustrated by worked problems concerning relevant wave-field applications.
Higher dimensional theories have attracted much attention because
they make it possible to reduce much of physics in a concise,
elegant fashion that unifies the two great theories of the 20th
century: Quantum Theory and Relativity. This book provides an
elementary description of quantum wave equations in higher
dimensions at an advanced level so as to put all current
mathematical and physical concepts and techniques at the reader's
disposal. A comprehensive description of quantum wave equations in
higher dimensions and their broad range of applications in quantum
mechanics is provided, which complements the traditional coverage
found in the existing quantum mechanics textbooks and gives
scientists a fresh outlook on quantum systems in all branches of
physics.
Signal Processing for Computer Vision is a unique and thorough treatment of the signal processing aspects of filters and operators for low-level computer vision. Computer vision has progressed considerably over recent years. From methods only applicable to simple images, it has developed to deal with increasingly complex scenes, volumes and time sequences. A substantial part of this book deals with the problem of designing models that can be used for several purposes within computer vision. These partial models have some general properties of invariance generation and generality in model generation. Signal Processing for Computer Vision is the first book to give a unified treatment of representation and filtering of higher order data, such as vectors and tensors in multidimensional space. Included is a systematic organisation for the implementation of complex models in a hierarchical modular structure and novel material on adaptive filtering using tensor data representation. Signal Processing for Computer Vision is intended for final year undergraduate and graduate students as well as engineers and researchers in the field of computer vision and image processing.
Substantial new breakthroughs are happening in telecommunications technology. This volume presents a state-of-the-art review of the current research activities in intelligent network technology. It contains the proceedings of a workshop on intelligent networks organized by the International Federation of Information Processsing and held as part of the Third Summer School on Telecommunications in Lappeenranta, Finland, August 1994.
Since 1968, the International Acoustical Imaging Symposium has provided a unique forum for advanced research, promoting the sharing of technology, developments, methods and theory among all areas of acoustics. Volume 28 of the Proceedings offers an excellent collection of papers presented in six major categories, offering both a broad perspective on the state of the art in the field as well as an in-depth look at its leading edge research.
Multilingual Text-to-Speech Synthesis: The Bell Labs Approach is the first monograph-length description of the Bell Labs work on multilingual text-to-speech synthesis. Every important aspect of the system is described, including text analysis, segmental timing, intonation and synthesis. There is also a discussion of evaluation methodologies, as well as a chapter outlining some future areas of research. While the book focuses on the Bell Labs approach to the various problems of converting from text into speech, other approaches are discussed and compared. Thus, this book serves both the function of providing a single reference to an important strand of research in multilingual synthesis, while at the same time providing a source of information on current trends in the field. Chapters in this work were contributed by Richard Sproat, Jan van Santen, Bernd Mobius, Chilin Shih, Joseph Olive, Evelyne Tzoukermann, all of Bell Labs, and Kazuaki Maeda of the University of Pennsylvania.
The subject of wave phenomena is well-known for its inter-disciplinary nature. Progress in this field has been made both through the desire to solve very practical problems, arising in acoustics, optics, radiophysics, electronics, oceanography, me teorology and so on, and through the development of mathematical physics which emphasized that completely different physical phenomena are governed by the same (or similar) equations. In the immense literature on physics of waves there is no lack of good presentations of particular branches or general textbooks on mathematical physics. But if one restricts the attention to pulse propagation phenomena, one no tices that many useful facts are scattered among the various books and journals, and their connections are not immediately apparent. For example, the problems involv ing acoustic pulse propagation in bubbly liquids and those related to electromagnetic pulses in resonant media are usually treated without much cross reference in spite of their obvious connections. The authors of this book have attempted to write a coherent account of a few pulse propagation problems selected from different branches of applied physics. Although the basic material on linear pulse propagation is included, some topics have their own unique twists, and a comprehensive treatment of this body of material can hardly be found in other sources. First of all, the problem of pulse propagation in non equilibrium media (unstable or admitting attenuation) is far more delicate than it is apparent at a first glance."
The problems it addresses include emotion representation, annotation of music excerpts, feature extraction, and machine learning. The book chiefly focuses on content-based analysis of music files, a system that automatically analyzes the structures of a music file and annotates the file with the perceived emotions. Further, it explores emotion detection in MIDI and audio files. In the experiments presented here, the categorical and dimensional approaches were used, and the knowledge and expertise of music experts with a university music education were used for music file annotation. The automatic emotion detection systems constructed and described in the book make it possible to index and subsequently search through music databases according to emotion. In turn, the emotion maps of musical compositions provide valuable new insights into the distribution of emotions in music and can be used to compare that distribution in different compositions, or to conduct emotional comparisons of different interpretations of the same composition.
The major aim of this book is to introduce the ways in which
scientists approach and think about a phenomenon -- hearing -- that
intersects three quite different disciplines: the physics of sound
sources and the propagation of sound through air and other
materials, the anatomy and physiology of the transformation of the
physical sound into neural activity in the brain, and the
psychology of the perception we call hearing. Physics, biology, and
psychology each play a role in understanding how and what we hear.
The scope of this book is to present in a systematic and unified manner the ray method (in its various forms) for studying nonlinear wave propagation in situations of physical interest (essentially fluid dynamics and plasma physics). The book could be used for an advanced graduate course on nonlinear waves. It should also be of interest to applied mathematicians, physicists and engineers, working in areas related to nonlinear waves.
This book presents a comprehensive discussion of the commercial and military applications of small-aperture radio direction finding. Supported by 154 equations and 108 illustrations, it also details the functional elements of radio-direction finding and a definition of small-aperture DF based on linear wavelength criteria.
Nowadays, music-inspired phenomenon-mimicking harmony search algorithm is fast growing with many applications. One of key success factors of the algorithm is the employment of a novel stochastic derivative which can be used even for discrete variables. Instead of traditional calculus-based gradient, the algorithm utilizes musician's experience as a derivative in searching for an optimal solution. This can be a new paradigm and main reason in the successes of various applications. The goal of this book is to introduce major advances of the harmony search algorithm in recent years. The book contains 14 chapters with the following subjects: State-of-the-art in the harmony search algorithm structure; robotics (robot terrain and manipulator trajectory); visual tracking; web text data mining; power flow planning; fuzzy control system; hybridization (with Taguchi method or SQP method); groundwater management; irrigation; logistics; timetabling; and bioinformatics (RNA structure prediction). This book collects the above-mentioned theory and applications, which are dispersed in various technical publications, so that readers can have a good grasp of current status of the harmony search algorithm and foster new breakthroughs in their fields using the algorithm.
An image or video sequence is a series of two-dimensional (2-D) images sequen tially ordered in time. Image sequences can be acquired, for instance, by video, motion picture, X-ray, or acoustic cameras, or they can be synthetically gen erated by sequentially ordering 2-D still images as in computer graphics and animation. The use of image sequences in areas such as entertainment, visual communications, multimedia, education, medicine, surveillance, remote control, and scientific research is constantly growing as the use of television and video systems are becoming more and more common. The boosted interest in digital video for both consumer and professional products, along with the availability of fast processors and memory at reasonable costs, has been a major driving force behind this growth. Before we elaborate on the two major terms that appear in the title of this book, namely motion analysis and image sequence processing, we like to place them in their proper contexts within the range of possible operations that involve image sequences. In this book, we choose to classify these operations into three major categories, namely (i) image sequence processing, (ii) image sequence analysis, and (iii) visualization. The interrelationship among these three categories is pictorially described in Figure 1 below in the form of an "image sequence triangle.""
TUrbulence modeling encounters mixed evaluation concerning its impor tance. In engineering flow, the Reynolds number is often very high, and the direct numerical simulation (DNS) based on the resolution of all spatial scales in a flow is beyond the capability of a computer available at present and in the foreseeable near future. The spatial scale of energetic parts of a turbulent flow is much larger than the energy dissipative counterpart, and they have large influence on the transport processes of momentum, heat, matters, etc. The primary subject of turbulence modeling is the proper es timate of these transport processes on the basis of a bold approximation to the energy-dissipation one. In the engineering community, the turbulence modeling is highly evaluated as a mathematical tool indispensable for the analysis of real-world turbulent flow. In the physics community, attention is paid to the study of small-scale components of turbulent flow linked with the energy-dissipation process, and much less interest is shown in the foregoing transport processes in real-world flow. This research tendency is closely related to the general belief that universal properties of turbulence can be found in small-scale phenomena. Such a study has really contributed much to the construction of statistical theoretical approaches to turbulence. The estrangement between the physics community and the turbulence modeling is further enhanced by the fact that the latter is founded on a weak theoretical basis, compared with the study of small-scale turbulence."
"Completing Transition: The Main Challenges" was the topic around which the Oesterreichische Nationalbank and the Joint Vienna Institute organized a high-level conference in 2000, in a continuation of long-standing efforts to promote the dialogue and understanding between various regions in Europe. Given the heterogeneity of the transition countries of Central and Eastern Europe and the heterogeneity of progress toward convergence, the outlook for finishing transition is divergent. However, what will generally be important is corporate governance and institutional reform to sufficiently underpin macroeconomic success, plus a definite commitment of the responsible institutions in the transition countries to follow the chosen policies consistently.
Hadamard Matrix Analysis and Synthesis: With Applications to Communications and Signal/Image Processing presents the basic concepts of Sylvester's construction of Hadamard matrices, the eigenvalue-eigenvector decompositions, along with its relationship to Fourier transforms. Relevant computational structures are included for those interested in implementing the Hadamard transform. The 2-dimensional Hadamard transform is discussed in terms of a 1- dimensional transform. The applications presented touch on statistics, error correction coding theory, communications signaling, Boolean function analysis and synthesis, image processing, sequence theory (maximal length binary sequences, composite sequences, and Thue-Morse sequences) and signal representation. An interesting application of the Hadamard transform to images is the Naturalness Preserving Transform (NPT), which is presented. The NPT provides a way to encode an image that can be reconstructed when it is transmitted through a noisy or an unfriendly channel. The potential applications of the Hadamard transform are wide and the book samples many of the important concepts among a vast field of applications of the transform. Hadamard Matrix Analysis and Synthesis: With Applications to Communications and Signal/Image Processing serves as an excellent reference source and may be used as a text for advanced courses on the topic. |
You may like...
Robotic Sailing 2014 - Proceedings of…
Fearghal Morgan, Dermot Tynan
Hardcover
R3,990
Discovery Miles 39 900
Track-Before-Detect Using Expectation…
Samuel J. Davey, Han X. Gaetjens
Hardcover
R2,958
Discovery Miles 29 580
|