![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Classical mechanics > Sound, vibration & waves (acoustics)
Mobile computing is one of the biggest issues of computer technology, science and industry today. This book looks at the requirements of developing mobile computing systems and the challenges they pose to computer designers. It examines the requirements of mobile computing hardware, infrastructure and communications services. Information security and the data protection aspects of design are considered, together with telecommunications facilities for linking up to the worldwide computer infrastructure. The book also considers the mobility of computer users versus the portability of the equipment. The text also examines current applications of mobile computing in the public sector and future innovative applications.
This proceedings present the results of the 29th International Symposium on Shock Waves (ISSW29) which was held in Madison, Wisconsin, U.S.A., from July 14 to July 19, 2013. It was organized by the Wisconsin Shock Tube Laboratory, which is part of the College of Engineering of the University of Wisconsin-Madison. The ISSW29 focused on the following areas: Blast Waves, Chemically Reactive Flows, Detonation and Combustion, Facilities, Flow Visualization, Hypersonic Flow, Ignition, Impact and Compaction, Industrial Applications, Magnetohydrodynamics, Medical and Biological Applications, Nozzle Flow, Numerical Methods, Plasmas, Propulsion, Richtmyer-Meshkov Instability, Shock-Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shock Waves in Condensed Matter, Shock Waves in Multiphase Flow, as well as Shock Waves in Rarefield Flow. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 29 and individuals interested in these fields.
Most fluid flows of practical importance are fully three-dimensional, so the non-linear instability properties of three-dimensional flows are of particular interest. In some cases the three-dimensionality may have been caused by a finite amplitude disturbance whilst, more usually, the unperturbed state is three-dimensional. Practical applications where transition is thought to be associated with non-linearity in a three- dimensional flow arise, for example, in aerodynamics (swept wings, engine nacelles, etc.), turbines and aortic blood flow. Here inviscid cross-flow' disturbances as well as Tollmien-Schlichting and GArtler vortices can all occur simultaneously and their mutual non-linear behaviour must be understood if transition is to be predicted. The non-linear interactions are so complex that usually fully numerical or combined asymptotic/numerical methods must be used. Moreover, in view of the complexity of the instability processes, there is also a growing need for detailed and accurate experimental information. Carefully conducted tests allow us to identify those elements of a particular problem which are dominant. This assists in both the formulation of a relevant theoretical problem and the subsequent physical validation of predictions. It should be noted that the demands made upon the skills of the experimentalist are high and that the tests can be extremely sophisticated - often making use of the latest developments in flow diagnostic techniques, automated high speed data gathering, data analysis, fast processing and presentation.
Speech coding has been an ongoing area of research for several decades, yet the level of activity and interest in this area has expanded dramatically in the last several years. Important advances in algorithmic techniques for speech coding have recently emerged and excellent progress has been achieved in producing high quality speech at bit rates as low as 4.8 kb/s. Although the complexity of the newer more sophisticated algorithms greatly exceeds that of older methods (such as ADPCM), today's powerful programmable signal processor chips allow rapid technology transfer from research to product development and permit many new cost-effective applications of speech coding. In particular, low bit rate voice technology is converging with the needs of the rapidly evolving digital telecom munication networks. The IEEE Workshop on Speech Coding for Telecommunications was held in Vancouver, British Columbia, Canada, from September 5 to 8, 1989. The objective of the workshop was to provide a forum for discussion of recent developments and future directions in speech coding. The workshop attracted over 130 researchers from several countries and its technical program included 51 papers."
This book presents all aspects of situational awareness using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers can also use the code as a spring-board to develop their own application based software code.
What is "digital telephony"? To the authors, the term digital telephony denotes the technology used to provide a completely digital telecommunication system from end-to-end. This implies the use of digital technology from one end instru ment through transmission facilities and switching centers to another end instru ment. Digital telephony has become possible only because of the recent and on going surge of semiconductor developments, allowing microminiaturization and high reliability along with reduced costs. This book deals with both the future and the present. Thus, the first chapter is entitled, "A Network in Transition." As baselines, Chapters 2 and 11 provide the reader with the present status of teler-hone technology in terms of voice digiti zation as well as switching principles. The book is an outgrowth of the authors' consulting and teaching experience in the field since the early 1980s. The book has been written to provide both the engineering student and the practicing engineer a working knowledge of the prin ciples of present and future telecommunication systems based upon the use of the public switched network. Problems or discussion questions have been included at the ends of the chapters to facilitate the book's use as a senior-level or first year graduate-level course text. Numerous clients and associates of the authors as well as hundreds of others have provided useful information and examples for the text, and the authors wish to thank all those who have so contributed either directly or indirectly."
Acoustic and elastic wave propagation is being investigated in media such as the ocean, the earth, biological tissues and solid materials. In these different areas, many specific imaging techniques have been developed which differ in the wavelength of the sound, its polarisation and the instrumentation used. In this interdisciplinary book, leading experts in underwater acoustics, seismology, acoustic medical imaging and non-destructive testing present basic concepts as well as the recent advances in imaging. The different subjects tackled show significant similarities. This volume gives an up-to-date-overview of the field and is intended for scientists and graduates alike. Also available online in LINK:http://link.springer.de/series/tap/Access to table of contents and abstracts is free. Subscribers have access to the full text in PDF format when asking for a password.
This book provides a comprehensive presentation of the conceptual basis of wavelet analysis, including the construction and analysis of wavelet bases. It motivates the central ideas of wavelet theory by offering a detailed exposition of the Haar series, then shows how a more abstract approach allows readers to generalize and improve upon the Haar series. It then presents a number of variations and extensions of Haar construction.
This book puts the focus on serving human listeners in the sound field synthesis although the approach can be also exploited in other applications such as underwater acoustics or ultrasonics. The author derives a fundamental formulation based on standard integral equations and the single-layer potential approach is identified as a useful tool in order to derive a general solution. He also proposes extensions to the single-layer potential approach which allow for a derivation of explicit solutions for circular, planar, and linear distributions of secondary sources. Based on above described formulation it is shown that the two established analytical approaches of Wave Field Synthesis and Near-field Compensated Higher Order Ambisonics constitute specific solutions to the general problem which are covered by the single-layer potential solution and its extensions.
Coding and Modulation for Digital Television presents a comprehensive description of all error control coding and digital modulation techniques used in Digital Television (DTV). This book illustrates the relevant elements from the expansive theory of channel coding to how the transmission environment dictates the choice of error control coding and digital modulation schemes. These elements are presented in such a way that both the mathematical integrity' and understanding for engineers' are combined in a complete form and supported by a number of practical examples. In addition, the book contains descriptions of the existing standards and provides a valuable source of corresponding references. Coding and Modulation for Digital Television also features a description of the latest techniques, providing the reader with a glimpse of future digital broadcasting. These include the concepts of soft-in-soft-out decoding, turbo-coding and cross-correlated quadrature modulation, all of which will have a prominent future in improving efficiency of the next generation DTV systems. Coding and Modulation for Digital Television is essential reading for all undergraduate and postgraduate students, broadcasting and communication engineers, researchers, marketing managers, regulatory bodies, governmental organizations and standardization institutions of the digital television industry.
The inverse scattering problem is central to many areas of science and technology such as radar and sonar, medical imaging, geophysical exploration and nondestructive testing. This book is devoted to the mathematical and numerical analysis of the inverse scattering problem for acoustic and electromagnetic waves. In this third edition, new sections have been added on the linear sampling and factorization methods for solving the inverse scattering problem as well as expanded treatments of iteration methods and uniqueness theorems for the inverse obstacle problem. These additions have in turn required an expanded presentation of both transmission eigenvalues and boundary integral equations in Sobolev spaces. As in the previous editions, emphasis has been given to simplicity over generality thus providing the reader with an accessible introduction to the field of inverse scattering theory. Review of earlier editions: "Colton and Kress have written a scholarly, state of the art account of their view of direct and inverse scattering. The book is a pleasure to read as a graduate text or to dip into at leisure. It suggests a number of open problems and will be a source of inspiration for many years to come." SIAM Review, September 1994 "This book should be on the desk of any researcher, any student, any teacher interested in scattering theory." Mathematical Intelligencer, June 1994"
The use of various types of wave energy is an increasingly promising, non-destructive means of detecting objects and of diagnosing the properties of quite complicated materials. An analysis of this technique requires an understanding of how waves evolve in the medium of interest and how they are scattered by inhomogeneities in the medium. These scattering phenomena can be thought of as arising from some perturbation of a given, known system and they are analysed by developing a scattering theory. This monograph provides an introductory account of scattering phenomena and a guide to the technical requirements for investigating wave scattering problems. It gathers together the principal mathematical topics which are required when dealing with wave propagation and scattering problems, and indicates how to use the material to develop the required solutions. Both potential and target scattering phenomena are investigated and extensions of the theory to the electromagnetic and elastic fields are provided. Throughout, the emphasis is on concepts and results rather than on the fine detail of proof; a bibliography at the end of each chapter points the interested reader to more detailed proofs of the theorems and suggests directions for further reading.Aimed at graduate and postgraduate students and researchers in mathematics and the applied sciences, this book aims to provide the newcomer to the field with a unified, and reasonably self-contained, introduction to an exciting research area and, for the more experienced reader, a source of information and techniques.
Waves represent a classic topic of study in physics, mathematics, and engineering. Many modern technologies are based on our understanding of waves and their interaction with matter. In the past thirty years there have been some revolutionary developments in the study of waves. The present volume is the only available source which details these developments in a systematic manner, with the aim of reaching a broad audience of non-experts. It is an important resource book for those interested in understanding the physics underlying nanotechnology and mesoscopic phenomena, as well as for bridging the gap between the textbooks and research frontiers in any wave related topic. A special feature of this volume is the treatment of classical and quantum mechanical waves within a unified framework, thus facilitating an understanding of similarities and differences between the two.
A major advantage of a direct digital synthesizer is that its output frequency, phase and amplitude can be precisely and rapidly manipulated under digital processor control. This book was written to find possible applications for radio communication systems.
Welcome to the fourth IFIP workshop on protocols for high speed networks in Vancouver. This workshop follows three very successful workshops held in Ziirich (1989), Palo Alto (1990) and Stockholm (1993) respectively. We received a large number of papers in response to our call for contributions. This year, forty papers were received of which sixteen were presented as full papers and four were presented as poster papers. Although we received many excellent papers the program committee decided to keep the number of full presentations low in order to accommodate more discussion in keeping with the format of a workshop. Many people have contributed to the success of this workshop including the members of the program committee who, with the additional reviewers, helped make the selection of the papers. We are thankful to all the authors of the papers that were submitted. We also thank several organizations which have contributed financially to this workshop, specially NSERC, ASI, CICSR, UBC, MPR Teltech and Newbridge Networks.
The need for automatic speech recognition systems to be robust with respect to changes in their acoustical environment has become more widely appreciated in recent years, as more systems are finding their way into practical applications. Although the issue of environmental robustness has received only a small fraction of the attention devoted to speaker independence, even speech recognition systems that are designed to be speaker independent frequently perform very poorly when they are tested using a different type of microphone or acoustical environment from the one with which they were trained. The use of microphones other than a "close talking" headset also tends to severely degrade speech recognition -performance. Even in relatively quiet office environments, speech is degraded by additive noise from fans, slamming doors, and other conversations, as well as by the effects of unknown linear filtering arising reverberation from surface reflections in a room, or spectral shaping by microphones or the vocal tracts of individual speakers. Speech-recognition systems designed for long-distance telephone lines, or applications deployed in more adverse acoustical environments such as motor vehicles, factory floors, oroutdoors demand far greaterdegrees ofenvironmental robustness. There are several different ways of building acoustical robustness into speech recognition systems. Arrays of microphones can be used to develop a directionally-sensitive system that resists intelference from competing talkers and other noise sources that are spatially separated from the source of the desired speech signal."
This book covers the technology of switching or modulating light in semiconductor optical waveguides. Currently a key function for optical communications systems is the conversion of data from an electrical signal to an optical signal for transmission in very low loss optical fibres and the converse process of optical to electrical conversion the O/E/O data conversion. This conversion between electronic and photonic signals imposes an energy consumption overhead on optical communication systems. So many research workers have been attracted to ultrafast all-optical switching of data in different formats. As a way of introduction to all-optical switching in semiconductor waveguides the book covers the electro-optic effect, electroabsorption and electrorefraction; effects that can be used in semiconductor optical modulation devices. But the book focuses on all-optical switching using second and third order optical nonlinearities in AlGaAs optical waveguides. It covers a variety of device configurations including integrated nonlinear couplers and Mach-Zehnder interferometers. Further, it provides design software in suit of Mathematica notebooks that can be used to explore the device design.
FolJowing the formulation of the laws of mechanics by Newton, Lagrange sought to clarify and emphasize their geometrical character. Poincare and Liapunov successfuIJy developed analytical mechanics further along these lines. In this approach, one represents the evolution of all possible states (positions and momenta) by the flow in phase space, or more efficiently, by mappings on manifolds with a symplectic geometry, and tries to understand qualitative features of this problem, rather than solving it explicitly. One important outcome of this line of inquiry is the discovery that vastly different physical systems can actually be abstracted to a few universal forms, like Mandelbrot's fractal and Smale's horse-shoe map, even though the underlying processes are not completely understood. This, of course, implies that much of the observed diversity is only apparent and arises from different ways of looking at the same system. Thus, modern nonlinear dynamics 1 is very much akin to classical thermodynamics in that the ideas and results appear to be applicable to vastly different physical systems. Chaos theory, which occupies a central place in modem nonlinear dynamics, refers to a deterministic development with chaotic outcome. Computers have contributed considerably to progress in chaos theory via impressive complex graphics. However, this approach lacks organization and therefore does not afford complete insight into the underlying complex dynamical behavior. This dynamical behavior mandates concepts and methods from such areas of mathematics and physics as nonlinear differential equations, bifurcation theory, Hamiltonian dynamics, number theory, topology, fractals, and others.
Presenting a comprehensive account of the physical concepts and theoretical approaches developed for the study of the dynamical properties of liquids (or, more generally, of high-density fluids), at a microscopic level, this book first discusses the basic dynamical phenomena to be interpreted, as well as the various experimental probes. It then proceeds to an exposition of the sophisticated theoretical techniques needed for a satisfactory account of both single particle and collective motions. The complications are faced in a stepwise fashion, with special attention to the physical content of the results. Based on the results of the progress achieved in the last decade the book provides a satisfactory understanding of most of the phenomena characterising this fascinating field.
The book analyzes the basic problems of oscillation processes and theoretical aspects of noise and vibration in friction systems. It presents generalized information available in literature data and results of the authors in vibroacoustics of friction joints, including car brakes and transmissions. The authors consider the main approaches to abatement of noise and vibration in non-stationary friction processes. Special attention is paid to materials science aspects, in particular to advanced composite materials used to improve the vibroacoustic characteristics of tribopairs The book is intended for researchers and technicians, students and post-graduates specializing in mechanical engineering, maintenance of machines and transport means, production certification, problems of friction and vibroacoustics.
The Integrated Services Digital Network (ISDN) represents the current position in about a hundred years of evolutionary growth of the worldwide telecommunications infrastructure. This evolution is by no means complete and the next few years will see the emergence of a "Broad-band" ISDN as the next stage of evolutionary development. It is important to appreciate the evolutionary nature of the telecommunications infrastructure if one is to properly understand much of the thinking that lies behind the current ISDN proposals. This book therefore begins with a number of chapters devoted to a study of the various developments which have eventually led to the concept of an integrated digital network. These include the development of digital transmission of speech using PCM and the development of digital switching techniques based on stored program control. The book then turns to a consideration of those features of the existing telecommunications network which need to be modified in order to make ISDN a realizable practicality. Of particular importance is the digitization of transmission over the links between the user and the local exchange. Next we look at the current practice and proposals for ISDN based on the technology presently in use in the telephone network. Finally, we look at the proposals for a broadband ISDN likely to become widely available by the turn of the century.
Rapid Prototyping of Application Specific Signal Processors presents leading-edge research that focuses on design methodology, infrastructure support and scalable architectures developed by the 150 million dollar DARPA United States Department of Defense RASSP Program. The contributions to this edited work include an introductory overview chapter that explains the origin, concepts and status of this effort. The RASSP Program is a multi-year DARPA/Tri-Service initiative intended to dramatically improve the process by which complex digital systems, particularly embedded signal processors, are designed, manufactured, upgraded and supported. This program was originally driven by military applications for signal processing. The requirements of military applications for real-time signal processing are typically more demanding than those of commercial applications, but the time gap between technology employed in advanced military prototypes and commercial products is narrowing rapidly. The research on methodologies, infrastructure and architectures presented in this book is applicable to commercial signal processing systems that are in design now, or will be developed before the end of the decade. Rapid Prototyping of Application Specific Signal Processors is a valuable reference for developers of embedded digital systems, particularly systems engineers for signal processing systems (such as digital TV, biomedical image processing systems and telecommunications) and for military contractors who are developing signal processing systems. This book will also be of interest to managers who are charged with responsibility for creating and maintaining environments and infrastructures for developing large embedded digital systems. The chief value for managers will be the defining of methods and processes that reduce development time and cost.
The work presented in this text relates to research work in the general area of adaptive filter theory and practice which has been carried out at the Department of Electrical Engineering, University of Edinburgh since 1977. Much of the earlier work in the department was devoted to looking at the problems associated with the physical implementation of these structures. This text relates to research which has been undertaken since 1984 which is more involved with the theoretical development of adaptive algorithms. The text sets out to provide a coherent framework within which general adaptive algorithms for finite impulse response adaptive filters may be evaluated. It further presents one approach to the problem of finding a stable solution to the infinite impulse response adaptive filter problem. This latter objective being restricted to the communications equaliser application area. The authors are indebted to a great number of people for their help, guidance and encouragement during the course of preparing this text. We should first express our appreciation for the support given by two successive heads of department at Edinburgh, Professor J. H. Collins and Professor J. Mavor. The work reported here could not have taken place without their support and also that of many colleagues, principally Professor P. M. Grant who must share much of the responsibility for instigating this line of research at Edinburgh.
An ideal text for advanced undergraduates, the book provides the foundations needed to understand the acoustics of rooms and musical instruments as well as the basics for scientists and engineers interested in noise and vibration. The new edition contains four new chapters devoted primarily to applications of acoustical principles in everyday life: Microphones and Other Transducers, Sound in Concert Halls and Studios, Sound and Noise Outdoors; and Underwater Sound.
Digital signal processing (DSP) is used in a wide range of applications such as speech, telephone, mobile radio, video, radar and sonar. The sample rate requirements of these applications range from 10 KHz to 100 MHz. Real time implementation of these systems requires design of hardware which can process signal samples as these are received from the source, as opposed to storing them in buffers and processing them in batch mode. Efficient implementation of real time hardware for DSP applications requires study of families of architectures and implementation styles out of which an appropriate architecture can be selected for a specified application. To this end, the digit-serial implementation style is proposed as an appropriate design methodology for cases where bit-serial systems cannot meet the sample rate requirements, and bit-parallel systems require excessive hardware. The number of bits processed in a clock cycle is referred to as the digit-size. The hardware complexity and the achievable sample rate increase with increase in the digit-size. As special cases, a digit serial system is reduced to bit-serial or bit-parallel when the digit-size is selected to equal one or the word-length, respectively. A family of implementations can be obtained by changing the digit-size parameter, thus permitting an optimal trade-off between throughput and size. Because of their structured architecture, digit-serial designs lend themselves to automatic compilation from algorithmic descriptions. An implementation of this design methodology, the Parsifal silicon compiler was developed at the General Electric Corporate Research and Development laboratory." |
You may like...
Biomaterials and Regenerative Medicine…
T V Chirila, Damien Harkin
Hardcover
Electrospinning: Nanofabrication and…
Binding, Xianfeng Wang, …
Paperback
R3,671
Discovery Miles 36 710
Computer Modelling of Microporous…
C.Richard A. Catlow, Berend Smit, …
Hardcover
R4,306
Discovery Miles 43 060
Nanofluid Applications for Advanced…
Shriram S. Sonawane, Mohsen Sharifpur
Paperback
R3,922
Discovery Miles 39 220
Materials for Sustainable Energy, Volume…
Rudi van Eldik, Wojciech Macyk
Hardcover
R5,887
Discovery Miles 58 870
Comprehensive Structural Integrity
Ferri M.H. Aliabadi, Winston (Wole) Soboyejo
Hardcover
R99,774
Discovery Miles 997 740
|