![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > States of matter
There is a certain fascination associated with words. The manipulation of strings of symbols according to mutually accepted rules allows a language to express history as well as to formulate challenges for the future. But language changes as old words are used in a new context and new words are created to describe changing situations. How many words has the computer revolution alone added to languages? "Inorganometallic" is a word you probably have never encountered before. It is one created from old words to express a new presence. A strange sounding word, it is also a term fraught with internal contradiction caused by the accepted meanings of its constituent parts. "In organic" is the name of a discipline of chemistry while "metallic" refers to a set of elements constituting a subsection of that discipline. Why then this Carrollian approach to entitling a set of serious academic papers? Organic, the acknowledged doyenne of chemistry, is distinguished from her brother, inorganic, by the prefix "in," i. e. , he gets everything not organic. Organometallic refers to compounds with carbon-metal bonds. It is simple! Inorganometallic is everything else, i. e. , compounds with noncarbon-metal element bonds. But why a new term? Is not inorganic sufficient? By virtue of training, limited time, resources, co-workers, and so on, chemists tend to work on a specific element class, on a particular compound type, or in a particular phase. Thus, one finds element-oriented chemists (e. g.
"Written by some of the world's foremost experts, the articles in this book show how plasma science can be applied to environmental problems, including atmospheric sensing and modification, energy conservation, reduction of air pollution, and processing of ordinary and radioactive wastes. Atmospheric CFC's might be zapped with big lasers. Urban air pollution could be removed by large convection towers built in or near cities. And weapons-grade plutonium can be destroyed with specially designed particle accelerators. Some of the technologies described here are in use already, while others are in the prototype stage, or are speculative approaches deserving of further study." "Contents" Written by some of the world's foremost experts, the articles in this book show how plasma science can be applied to environmental problems, including atmospheric sensing and modification, energy conservation, reduction of air pollution, and processing of ordinary and radioactive wastes. Atmospheric CFC's might be zapped with big lasers. Urban air pollution could be removed by large convection towers built in or near cities. And weapons-grade plutonium can be destroyed with specially designed particle accelerators. Some of the technologies described here are in use already, while others are in the prototype stage, or are speculative approaches deserving of further study.
This thesis addresses the surprising features of zero-temperature statics and dynamics of several spin glass models, including correlations between soft spins that arise spontaneously during avalanches, and the discovery of localized states that involve the presence of two-level systems. It also presents the only detailed historiographical research on the spin glass theory. Despite the extreme simplicity of their definition, spin glasses display a wide variety of non-trivial behaviors that are not yet fully understood. In this thesis the author sheds light on some of these, focusing on both the search for phase transitions under perturbations of Hamiltonians and the zero-temperature properties and responses to external stimuli. After introducing spin glasses and useful concepts on phase transitions and numerics, the results of two massive Monte Carlo campaigns on three-dimensional systems are presented: The first of these examines the de Almeida-Thouless transition, and proposes a new finite-size scaling ansatz, which accelerates the convergence to the thermodynamic limit. The second reconstructs the phase diagram of the Heisenberg spin glass with random exchange anisotropy.
This book summarizes the current knowledge of two-dimensional oxide materials. The fundamental properties of 2-D oxide systems are explored in terms of atomic structure, electronic behavior and surface chemistry. The concept of polarity in determining the stability of 2-D oxide layers is examined, charge transfer effects in ultrathin oxide films are reviewed as well as the role of defects in 2-D oxide films. The novel structure concepts that apply in oxide systems of low dimensionality are addressed, and a chapter giving an overview of state-of-the-art theoretical methods for electronic structure determination of nanostructured oxides is included. Special emphasis is given to a balanced view from the experimental and the theoretical side. Two-dimensional materials, and 2-D oxides in particular, have outstanding behavior due to dimensionality and proximity effects. Several chapters treat prototypical model systems as illustrative examples to discuss the peculiar physical and chemical properties of 2-D oxide systems. The chapters are written by renowned experts in the field.
The scientific description of processes involved in the powerful release of energy from high explosive materials remains one of the most complex problems confronting modern science. In spite of fifty years of concentrated research built upon careful and precise experiments and the massive use of modern computers, the problem remains a major challenge. Anatoliy N. Dremin is recognized as perhaps the most innovative contributor to detonation science and this book provides unique insights into the physics, chemistry, and mechanics relevant to initiation and sustenance of detonation processes. The book presents theories, both conventional and unusual, for describing the processes as well as the experimental challenges to theory and modeling. An unusually valuable contribution to modern science, it will be required reading for any serious student of energetic materials and powerful, high-energy processes.
Molecular Theory of Solvation presents the recent progress in the statistical mechanics of molecular liquids applied to the most intriguing problems in chemistry today, including chemical reactions, conformational stability of biomolecules, ion hydration, and electrode-solution interface. The continuum model of "solvation" has played a dominant role in describing chemical processes in solution during the last century. This book discards and replaces it completely with molecular theory taking proper account of chemical specificity of solvent. The main machinery employed here is the reference-interaction-site-model (RISM) theory, which is combined with other tools in theoretical chemistry and physics: the ab initio and density functional theories in quantum chemistry, the generalized Langevin theory, and the molecular simulation techniques. This book will be of benefit to graduate students and industrial scientists who are struggling to find a better way of accounting and/or predicting "solvation" properties.
This book describes the physics of the second-generation quartz crystal microbalance (QCM), a fundamental method of analysis for soft matter at interfaces. From a device for measuring film thickness in vacuum, the quartz crystal microbalance (QCM) has in the past two decades evolved into a versatile instrument for analyzing soft matter at solid/liquid and solid/gas interfaces that found applications in diverse fields including the life sciences, material science, polymer research and electrochemistry. As a consequence of this success, the QCM is now being used by scientists with a wide variety of backgrounds to study an impressive diversity of samples, with intricate data analysis methods being elaborated along the way. It is for these practitioners of the QCM that the book is written. It brings across basic principles behind the technique and the data analysis methods in sufficient detail to be educational and in a format that is accessible to anyone with an undergraduate level knowledge of any of the physical or natural sciences. These principles concern the analysis of acoustic shear waves and build on a number of fundamental physical concepts which many users of the technique do not usually come across. They have counterparts in optical spectroscopy, electrical engineering, quantum mechanics, rheology and mechanics, making this book a useful educational resource beyond the QCM itself. The main focus is the physics of QCM, but as the book describes the behavior of the QCM when exposed to films, droplets, polymer brushes, particles, vesicles, nanobubbles and stick-slip, it also offers insight into the behavior of soft matter at interfaces in a more general sense.
This volume contains a sequence of reviews presented at the NATO Advanced Study Institute on 'Low Dimensional Structures in Semiconductors ... from Basic Physics to Applications.' This was part of the International School of Materials Science and 1990 at the Ettore Majorana Centre in Sicily. Technology held in July Only a few years ago, Low Dimensional Structures was an esoteric concept, but now it is apparent they are likely to playa major role in the next generation of electronic devices. The theme of the School acknowledged this rapidly developing maturity.' The contributions to the volume consider not only the essential physics, but take a wider view of the topic, starting from material growth and processing, then prog ressing right through to applications with some discussion of the likely use of low dimensional devices in systems. The papers are arranged into four sections, the first of which deals with basic con cepts of semiconductor and low dimensional systems. The second section is on growth and fabrication, reviewing MBE and MOVPE methods and discussing the achievements and limitations of techniques to reduce structures into the realms of one and zero dimensions. The third section covers the crucial issue of interfaces while the final section deals with devices and device physics."
"Smart Hydrogel Functional Materials" comprehensively and systematically describes our current understanding of smart or intelligent hydrogel functional materials with environmental stimuli-responsive functions. The contents range from hydrogels (including hydrogel-functionalized membranes) to microgels (including hydrogel-functionalized microcapsules) with various response properties, such as thermo-response, pH-response, pH-/thermo-dual-response, glucose-response, ethanol-response, ion-recognition, molecular-recognition, and so on. Most of the contents in this book represent the fresh achievements of the authors' group on smart hydrogel functional materials. While all chapters can be read as stand-alone papers, together they clearly describe the design concepts, fabrication strategies and methods, microstructures and performances of smart hydrogel functional materials. Vivid schematics and illustrations throughout the book enhance the accessibility of the theory and technologies involved. This is an ideal reference book for a broad general readership including chemists, materials researchers, chemical engineers, pharmaceutical scientists and biomedical researchers, who are interested in designing and fabricating smart hydrogel functional materials for various application purposes. Dr. Liang-Yin Chu is a professor at the School of Chemical Engineering, Sichuan University, China. He is a Distinguished Young Scholar of the National Natural Science Foundation of China and a Distinguished Professor of the "Chang Jiang Scholars Program" of the Ministry of Education of China.
In this book, the author theoretically studies two aspects of topological states. First, novel states arising from hybridizing surface states of topological insulators are theoretically introduced. As a remarkable example, the author shows the existence of gapless interface states at the interface between two different topological insulators, which belong to the same topological phase. While such interface states are usually gapped due to hybridization, the author proves that the interface states are in fact gapless when the two topological insulators have opposite chiralities. This is the first time that gapless topological novel interface states protected by mirror symmetry have been proposed. Second, the author studies the Weyl semimetal phase in thin topological insulators subjected to a magnetic field. This Weyl semimetal phase possesses edge states showing abnormal dispersion, which is not observed without mirror symmetry. The author explains that the edge states gain a finite velocity by a particular form of inversion symmetry breaking, which makes it possible to observe the phenomenon by means of electric conductivity.
Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.
This book introduces the basic theoretical concepts required for the analysis of the optical response of semiconductor systems in the coherent regime. It is the most instructive textbook on the theory and optical effects of semiconductors. The entire presentation is based on a one-dimensional tight-binding model. Starting with discrete-level systems, increasing complexity is added gradually to the model by including band-structure and many-particle interaction. Various linear and nonlinear optical spectra and temporal phenomena are studied. The analysis of many-body effects in nonlinear optical phenomena covers a major part of the book.
A totally new concept for clean surface processing of Si wafers is introduced in this book. Some fifty distinguished researchers and engineers from the leading Japanese semiconductor companies, such as NEC, Hitachi, Toshiba, Sony and Panasonic as well as from several universities reveal to us for the first time the secrets of these highly productive institutions. They describe the techniques and equipment necessary for the preparation of clean high-quality semiconductor surfaces as a first step in high-yield/high-quality device production. This book thus opens the door to the manufacturing of reliable nanoscale devices and will be extremely useful for every engineer, physicist and technician involved in the production of silicon semiconductor devices.
An updated and expanded translation of the highly popular Russian textbook, Introduction to Thermodynamics and Kinetic Theory of Matter examines equilibrium and kinetic properties of matter--gas, liquid, and solid--using the general principles of thermodynamics and kinetic theory. Readable and accessible throughout, this book provides both thermodynamic and statistical points of view, covering thermodynamic potentials, such as entropy and free energy, whenever relevant. The book takes a fresh approach to its subject matter, focusing equally on condensed matter and gases. It compares rarefied and condensed matter, classical and quantum systems, and real and ideal gases. Central to the book are intermolecular interactions, and the process by which they lead matter into a change of state. The author discusses the solid, crystalline phase, showing how it can be manipulated by lattice vibration as well as by thermal pressure. In addition, this is the only book in which the quasi-thermodynamic theory of gas/liquid interface is used for density profile calculation within the van der Waals theory of surface tension. Another major theme investigated here is the irreversible transfer properties of matter, such as diffusion and viscosity, heat and electric conductivity. The book presents the hypothesis of "local equilibrium, " which facilitates the calculation of the fluxes of matter, heat, or charge-- comparing them and predicting the resultant density and temperature dependencies of transport coefficients. Examples from situations when local equilibrium is absent are also included. Finally, the book covers all reversible processes subject to the principles of thermodynamics. This isespecially useful in experimental applications--optimizing the work of heat engines and pumps; providing methods for the condensation of gases into liquids; and explaining various phenomena such as phase equilibrium and transitions, surface tension, and thermal radiation. Addressing a broad audience, and using inductive logic and many illustrations, Introduction to Thermodynamics and Kinetic Theory of Matter leads the reader from basic phenomena to advanced models, and provides from the outset opportunities for experimental work in related fields of physics and physical chemistry. This highly original book about the kinetic properties of the microparticles constituting gases, liquids, and solids--as well as light--is an updated version of a very popular Russian text. Dealing with areas of molecular physics, this edition updates all information, covering elementary statistical mechanics and kinetic theory, and expanding the Russian text to include thermodynamics. Particularly innovative are the methods--exclusive to this book--for calculating surface structure within quasi-thermodynamics. Also unique is the comparison between rarefied and condensed matter, which is not offered in any other text. Addressing both students and advanced researchers, the book assumes only a general math and classical mechanics background, allowing the reader to progress quickly from the introductory material to complex topics. It provides:
This book is an up-to-date survey of the major optical characterization techniques for thin solid films. Emphasis is placed on practicability of the various approaches. Relevant fundamentals are briefly reviewed before demonstrating the application of these techniques to practically relevant research and development topics. The book is written by international top experts, all of whom are involved in industrial research and development projects.
This book provides an overview of recent research highlights in the main areas of application of magnetic reconnection (MR), including planetary, solar and magnetospheric physics and astrophysics. It describes how research on magnetic reconnection, especially concerning the Earth's magnetosphere, has grown extensively due to dedicated observations from major satellite missions such as Cluster, Double Star and Themis. The accumulated observations from these missions are being supplemented by many theoretical and modelling efforts, for which large scale computer facilities are successfully being used, and the theoretical advances are also covered in detail. Opening with an introductory discussion of some fundamental issues related to magnetic reconnection, subsequent chapters address topics including collisionless magnetic reconnection, MHD structures in 3D reconnection, energy conversion processes, fast reconnection mediated by plasmoids, rapid reconnection and magnetic field topology. Further chapters consider specific areas of application such as magnetospheric dayside and tail reconnection, comparative reconnection in planetary systems and reconnection in astrophysical systems. The book offers insight into discussions about fundamental concepts and key aspects of MR, access to the full set of applications of MR as presently known in space physics and in astrophysics, and an introduction to a new related area of study dealing with the annihilation of quantum magnetic fluxes and its implications in the study on neutron star activity. The book is aimed primarily at students entering the field, but will also serve as a useful reference text for established scientists and senior researchers.
Oaxaca, Mexico, was the place chosen by a large international group of scientists to meet and discuss on the recent advances on the understanding of the physical prop- ties of low dimensional systems; one of the most active fields of research in condensed matter in the last years. The International Symposium on the Physics of Low Dim- sions took place in January 16-20, 2000. The group of scientists converging into the historical city of Oaxaca, in the state of the same name, had come from Argentina, Chile, Venezuela, several places in Mexico, Canada, U. S. A. , England, France, Italy, Germany, Russia, and Switzerland. The presentations at the workshop provided sta- of-art reviews of many of the most important problems, currently under study. Equally important to all the participants in the workshop was the fact that we had come to honor a friend, Hans Christoph Siegmann, on his sixty-fifth birthday. This Festschrift recognizes the intellectual leadership of Professor Siegmann in the field and as a sincere homage to his qualities as an exceptional friend, college and mentor. Those who have had the privilege to work closely with Hans Christoph have been deeply impressed by his remarkable analytic mind as well as by his out of range kindness and generosity. Hans Christoph has contributed to the understanding of the difficult and very important problem of the magnetic properties of finite systems: surfaces, thin films, heterostructures.
In the study of strongly interacting systems, two problems are of particular importance, namely the knowledge of their interactions and the calculation of their structure and properties. In this course, the quark models for hadrons is widely examined while the technique for detailed calculations on strongly interacting systems is extensively discussed.
The theory of simple and complex fluids has made considerable recent progress, due to the emergence of new concepts and theoretical tools, and also to the availability of a large body of new experimental data on increas ingly complex systems, as well as far-reaching methodological developments in numerical simulations. This AS aimed at providing a comprehensive overview of the most significant theoretical developments, supplemented by a few presentations of cutting-edge simulation and experimental work. The impact of the Institute in the overall landscape of Statistical Mechanics received an important recognition with its inclusion in the list of satellite events of STATPHYS20, the triennal international conference on Statistical Physics held in Paris in July 1998. These Proceedings contain the texts of the 13 Lecture Courses and 9 Invited Seminars delivered at Patti. Two clear trends emerge from these Proceedings: first, the diversity of new and unexpected theoretical results relating to classic models of liq uids, which have recently been subjected to fresh scrutiny; and secondly the parallel emergence of new concepts, models and methods, aimed at investigating complex fluids and phenomena, like the phase behaviour of fluids in pores, macromolecular assemblies, and the glass transition. Many of the new tools have their roots in traditional liquid state theory, and, in conjunction with fresh input from related fields, allow it wider applicability."
The book contains a comprehensive review of the physics, modelling and simulation of electron transport at interfaces in semiconductor devices. Particular emphasis is put on the consistent derivation of interface or boundary conditions for semiconductor device simulation. It combines a review of existing interface charge transport models with original developments. A unified representation of charge transport at semiconductor interfaces is introduced. Models for the most important interfaces are derived, classified within the unique modelling framework, and discussed in the context of device simulation. Discretization methods for numerical solution techniques are presented.
The acquisition and interpretation of images is a central capability in almost all scientific and technological domains. In particular, the acquisition of electromagnetic radiation, in the form of visible light, UV, infrared, X-ray, etc. is of enormous practical importance. The ultimate sensitivity in electronic imaging is the detection of individual photons. With this book, the first comprehensive review of all aspects of single-photon electronic imaging has been created. Topics include theoretical basics, semiconductor fabrication, single-photon detection principles, imager design and applications of different spectral domains. Today, the solid-state fabrication capabilities for several types of image sensors has advanced to a point, where uncoooled single-photon electronic imaging will soon become a consumer product. This book is giving a specialists view from different domains to the forthcoming "single-photon imaging" revolution. The various aspects of single-photon imaging are treated by internationally renowned, leading scientists and technologists who have all pioneered their respective fields.
This thesis focuses on a cutting-edge area of research, which is aligned with CERN's mainstream research, the "AWAKE" project, dedicated to proving the capability of accelerating particles to the energy frontier by the high energy proton beam. The author participated in this project and has advanced the plasma wakefield theory and modelling significantly, especially concerning future plasma acceleration based collider design. The thesis addresses electron beam acceleration to high energy whilst preserving its high quality driven by a single short proton bunch in hollow plasma. It also demonstrates stable deceleration of multiple proton bunches in a nonlinear regime with strong resonant wakefield excitation in hollow plasma, and generation of high energy and high quality electron or positron bunches. Further work includes the assessment of transverse instabilities induced by misaligned beams in hollow plasma and enhancement of the wakefield amplitude driven by a self-modulated long proton bunch with a tapered plasma. This work has major potential to impact the next generation of linear colliders and also in the long-term may help develop compact accelerators for use in industrial and medical facilities.
Mobility Gradient of Polystyrene in Films Supported on Solid Substrates, by Yoshihisa Fujii, Hiroshi Morita, Atsushi Takahara and Keiji Tanaka Probing Properties of Polymers in Thin Films Via Dewetting, by Gunter Reiter Heterogeneous and Aging Dynamics in Single and Stacked Thin Polymer Films, by Koji Fukao, Takehide Terasawa, Kenji Nakamura, Daisuke Tahara Heterogeneous Dynamics of Polymer Thin Films as Studied by Neutron Scattering, by Rintaro Inoue and Toshiji Kanaya
The present book introduces and develops mathematical techniques for the treatment of nonlinear waves and singular perturbation methods at a level that is suitable for graduate students, researchers and faculty throughout the natural sciences and engineering. The practice of implementing these techniques and their value are largely realized by showing their application to problems of nonlinear wave phenomena in electronic transport in solid state materials, especially bulk semiconductors and semiconductor superlattices. The authors are recognized leaders in this field, with more than 30 combined years of contributions.
A "z pinch" is a deceptively simple plasma configuration in which a longitudinal current produces a magnetic field that confines the plasma. Z-pinch research is currently one of the fastest growing areas of plasma physics, with revived interest in z-pinch controlled fusion reactors along with investigations of new z-pinch applications, such as very high power x-ray sources, high-energy neutrons sources, and ultra-high magnetic fields generators. This book provides a comprehensive review of the physics of dense z pinches and includes many recent experimental results. |
![]() ![]() You may like...
Giants - The Dwarfs of Auschwitz
Yehuda Koren, Eilat Negev
Paperback
![]()
Living among the Dead - My Grandmother's…
Adena Bernstein Astrowsky
Hardcover
|